ECONOMICS 220-507: ECONOMETRICS I

Dr. Kusum Mundra
Rutgers University, Newark
Lectures: Th: 5:30 – 8:20, IWP 508
Spring 2010
Office: Room 804 Hill Hall
Office hours: Tue (12 – 2) or any other time by appointment
Phone: 973-353-5350
Email: kmundra@andromeda.rutgers.edu

Aim
Econometrics, literally “economic measurement,” is a branch of economics that attempts to quantify theoretical relationships. This course presents topics in econometrics including a review of the classical linear regression model and some advance topics. This course will have both a theoretical and an applied component and there will be a focus on using econometrics software in estimating econometrics models learned during the semester.

Pre-requisites
Students should have a basic knowledge of statistical methods and an undergraduate training in introductory econometrics along with some Calculus (640:119 or 640:135) as a minimum.

Grading
Grading will be based on exams, term project/homework as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm Exam</td>
<td>30%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>45%</td>
</tr>
<tr>
<td>Homework Assignments (Tentatively 5)</td>
<td>25%</td>
</tr>
</tbody>
</table>

Exams
Midterm (Tentatively) Mar 4
Final (Tentatively) During Finals Week

Teaching method
The course consists of three hour weekly lecture. During the semester some lecture time will be devoted to demonstrating the use of the econometrics software. Blackboard will be the website for the class.

Required Text

Suggested or Supplementary Texts
2. Wooldridge, Jeffrey M., Analysis of Cross Section and Panel Data, MIT Press.

Statistics and Matrix Algebra Review
The required textbooks cover statistics and matrix algebra review.
Wooldridge: Appendices A-D
Pindyck and Robinfeld: Ch 2

Additional Statistics Textbook

Econometrics Software
EViews (Student version will be fine) or STATA. Students may make use of these software in the Economics Lab (Hill Hall, Room 806). Any alternative software capable of estimating multiple regression and some advance models will be fine.

Course Outline
1. Review of the Classical Linear Regression Model with respect to Gauss Markov Theorem including functional form and dummy variable
 Wooldridge Chs: 1 – 7
 Pindyck and Rubinfeld: Chs 1 - 5

2. The Classical Regression Model in Matrix Form
 Wooldridge: Appendix E
 Pindyck and Rubinfeld: Appendices Chs 1-6

3. Violations of the Classical Linear Regression Assumptions
 Heteroscedasticity; Serial Correlation; Multicollinearity
 Wooldridge Chs: 8 – 9
 Pindyck and Rubinfeld: Ch 6

4. Simultaneous Equation Estimation
 Identification; Instrumental Variable Estimation and Two Stage Least Squares (2SLS); Seemingly Related Regression (SURE); Three Stage Least squares (3SLS)
 Wooldridge: Chs 15 - 16
 Pindyck and Rubinfeld: Ch 7 and Ch 12

5. Maximum Likelihood Estimation (MLE)
 Wooldridge: Appendix C
 Pindyck and Rubinfeld: Appendix 2.2
6. Qualitative Choice Models
 Probit, Logit, and Tobit Model
 Wooldridge: Ch 17
 Pindyck and Rubinfeld: Ch 11

7. Time Series
 White noise, Trend, AR, MA, and ARMA process; Causality and Unit Root Tests; Forecasting
 Wooldridge: Chs 10 – 11 & parts of Ch 18
 Pindyck and Rubinfeld: Chs 8-9 & Chs 16-17

8. Panel Data Model
 Simple pooling; Fixed effect and random effect model; Panel Data Hypothesis test
 Wooldridge: Ch 13 & Ch 14