Econometrics (26:223:554:01)

Spring 2011

Thursdays, 10:00 AM-12:50 P.M., 1 Washington Park 512, Newark

Professor Robert H. Patrick
Finance and Economics Department
Rutgers Business School - Newark and New Brunswick

Offices and hours: 1 Washington Place 1148, Newark Campus, Thursdays 1:00-2:00 P.M.,
Levin Building, Livingston Campus, Wednesdays 5:30-6:30 P.M., and by appointment.

Phone: (973) 353-5247, however, communication by e-mail is preferred outside of office hours.

e-mail: rpatrick@rutgers.edu (put E1 at the beginning of the subject line)

web: http://www.rci.rutgers.edu/~rpatrick/hp.html

This is the first of two required econometrics courses for Ph.D. students in Finance and
Economics. The purpose of this course is to develop basic econometric estimation and
hypothesis testing tools necessary to analyze and interpret the empirical relevance of financial
and other economic data. This requires developing statistical methods for estimation of
population parameters and testing hypotheses about them using a sample of data drawn from the
population distribution, under various assumptions regarding the true population relationship
between the observable economic variables. I will focus on the theoretical foundations of
econometric analysis and strategies for applying these basic econometric methods in empirical
finance and economics research. Topics covered include estimation and hypothesis testing using
the classic general linear regression model, combining sample and nonsample information,
dummy variables, random coefficients, multicollinearity, and the basics of large sample theory,
nonspherical disturbances, panel data, systems of equations, time-series, and their application.

The statistical methods covered in this course are a continuation and generalization of the
material covered in Linear Statistical Models (26:960:577). The references listed below will
serve as your background material for the topics covered. Students are encouraged to seek out
whatever reference material facilitates their learning of each topic (this should be a given for you
in all of your courses). For example, the topics in Griffiths, Hill, and Judge are also covered in
Greene, but Greene presents a more concise and mathematical treatment. The Handbooks
(chapters can be downloaded from the library) provide more detail and references for further
research. Students will find Griffiths, Hill, and Judge very useful in furthering their intuitive
understanding of building and interpreting econometric models, and especially helpful for those
in need of developing their understanding and use of matrix algebra. Related empirical articles
from the economics and finance literature will also be assigned, as well as selected material from
the books listed as references below.

There are a number of very good econometric software packages available. SAS and STATA
Rutgers has site licenses and NLOGIT/LIMDEP are three such packages that are widely used. While no specific software package is required, the use of some computational software (or programming if you prefer) will be required to complete the requirements in this course.

Course References

Handbook of Econometrics Volumes I-VI, North-Holland, various years.

*These books should also be available in the library (some electronically).

Anticipated Schedule:

<table>
<thead>
<tr>
<th>Date</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan. 20</td>
<td>Introduction, Classical General Linear Regression Model</td>
</tr>
<tr>
<td>Jan. 27</td>
<td>Classical General Linear Regression Model continued, Inference & Testing Hypotheses</td>
</tr>
<tr>
<td>Feb. 3</td>
<td>Combining Sample and Nonsample Information</td>
</tr>
<tr>
<td>Feb. 10</td>
<td>Dummy Variables and Varying Coefficients</td>
</tr>
<tr>
<td>Feb. 17</td>
<td>Specification, Multicollinearity</td>
</tr>
<tr>
<td>Feb. 24</td>
<td>Large Sample Theory</td>
</tr>
<tr>
<td>March 3</td>
<td>Exam 1</td>
</tr>
<tr>
<td>March 10</td>
<td>Nonspherical Disturbances</td>
</tr>
<tr>
<td>March 24</td>
<td>Nonspherical Disturbances continued</td>
</tr>
</tbody>
</table>
March 31 Introduction to Panel Data Models
April 7 Introduction to Systems of Equations
April 14 Introduction to Time Series
April 21 Applications
April 28 Applications and Course Review
May 5 Final Exam

Other topics may be added as time permits.

Evaluation of performance: Students are responsible for all problems and problem sets assigned in class, which will be randomly collected. Quizzes, graded problems, and class participation will be 20% of your course grade, exam 1 comprises 30%, and the final exam is the other 50%.