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Abstract

Many real-world applications require the prediction of long
sequence time-series, such as electricity consumption plan-
ning. Long sequence time-series forecasting (LSTF) demands
a high prediction capacity of the model, which is the ability
to capture precise long-range dependency coupling between
output and input efficiently. Recent studies have shown the
potential of Transformer to increase the prediction capacity.
However, there are several severe issues with Transformer
that prevent it from being directly applicable to LSTF, such
as quadratic time complexity, high memory usage, and in-
herent limitation of the encoder-decoder architecture. To ad-
dress these issues, we design an efficient transformer-based
model for LSTF, named Informer, with three distinctive char-
acteristics: (i) a ProbSparse Self-attention mechanism, which
achieves O(L logL) in time complexity and memory usage,
and has comparable performance on sequences’ dependency
alignment. (ii) the self-attention distilling highlights dominat-
ing attention by halving cascading layer input, and efficiently
handles extreme long input sequences. (iii) the generative
style decoder, while conceptually simple, predicts the long
time-series sequences at one forward operation rather than
a step-by-step way, which drastically improves the inference
speed of long-sequence predictions. Extensive experiments
on four large-scale datasets demonstrate that Informer sig-
nificantly outperforms existing methods and provides a new
solution to the LSTF problem.

1 Introduction
Time-series forecasting is a critical ingredient across many
domains, such as sensor network monitoring (Papadimitriou
and Yu 2006), energy and smart grid management, eco-
nomics and finance (Zhu and Shasha 2002), and disease
propagation analysis (Matsubara et al. 2014). In these sce-
narios, we can leverage a substantial amount of time-series
data on past behavior to make a forecast in the long run,
namely long sequence time-series forecasting (LSTF). How-
ever, existing methods are designed under limited problem
setting, like predicting 48 points or less (Hochreiter and
Schmidhuber 1997; Li et al. 2018; Yu et al. 2017; Liu et al.
2019; Qin et al. 2017; Wen et al. 2017). The increasingly
long sequences strain the models’ prediction capacity to
the point where some argue that this trend is holding the
LSTF research. As an empirical example, Fig.(1) shows the
forecasting results on a real dataset, where the LSTM net-
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Figure 1: (a) Short sequence predictions only reveal the
near future. (b) Long sequence time-series forecasting can
cover an extended period for better policy-planning and
investment-protecting. (c) The prediction capacity of exist-
ing methods limits the long sequence’s performance, i.e.,
starting from length=48, the MSE rises unacceptably high,
and the inference speed drops rapidly.

work predicts the hourly temperature of an electrical trans-
former station from the short-term period (12 points, 0.5
days) to the long-term period (480 points, 20 days). The
overall performance gap is substantial when the prediction
length is greater than 48 points (the solid star in Fig.(1(c)).
The MSE score rises to unsatisfactory performance, the in-
ference speed gets sharp drop, and the LSTM model fails.

The major challenge for LSTF is enhancing the predic-
tion capacity to meet the increasingly long sequences de-
mand, which requires (a) extraordinary long-range align-
ment ability and (b) efficient operations on long sequence in-
puts and outputs. Recently, Transformer models show supe-
rior performance in capturing long-range dependency than
RNN models. The self-attention mechanism can reduce the
maximum length of network signals traveling paths into the
theoretical shortest O(1) and avoids the recurrent structure,
whereby Transformer shows great potential for LSTF prob-
lem. But on the other hand, the self-attention mechanism
violates requirement (b) due to its L-quadratic computa-
tion and memory consumption on L length inputs/outputs.
Some large-scale Transformer models pour resources and
yield impressive results on NLP tasks (Brown et al. 2020),
but the training on dozens of GPUs and expensive deploying
cost make theses models unaffordable on real-world LSTF
problem. The efficiency of the self-attention mechanism and
Transformer framework becomes the bottleneck of applying
them to LSTF problem. Thus, in this paper, we seek to an-
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swer the question: can Transformer models be improved to
be computation, memory, and architecture efficient, as well
as maintain higher prediction capacity?

Vanilla Transformer (Vaswani et al. 2017) has three sig-
nificant limitations when solving LSTF:

1. The quadratic computation of self-attention. The
atom operation of self-attention mechanism, namely
canonical dot-product, causes the time complexity and
memory usage per layer to be O(L2).

2. The memory bottleneck in stacking layers for long
inputs. The stack of J encoder/decoder layer makes
total memory usage to be O(J · L2), which limits the
model scalability on receiving long sequence inputs.

3. The speed plunge in predicting long outputs. The
dynamic decoding of vanilla Transformer makes the
step-by-step inference as slow as RNN-based model,
suggested in Fig.(1c).

There are some prior works on improving the efficiency of
self-attention. The Sparse Transformer (Child et al. 2019),
LogSparse Transformer (Li et al. 2019), and Longformer
(Beltagy, Peters, and Cohan 2020) all use a heuristic method
to tackle limitation 1 and reduce the complexity of self-
attention mechanism to O(L logL), where their efficiency
gain is limited (Qiu et al. 2019). Reformer (Kitaev, Kaiser,
and Levskaya 2019) also achieves O(L logL) by locally-
sensitive hashing self-attention, but it only works on ex-
tremely long sequences. More recently, Linformer (Wang
et al. 2020) claims a linear complexityO(L), but the project
matrix can not be fixed for real-world long sequence in-
put, which may have the risk of degradation to O(L2).
Transformer-XL (Dai et al. 2019) and Compressive Trans-
former (Rae et al. 2019) use auxiliary hidden states to cap-
ture long-range dependency, which could amplify limitation
1 and be adverse to break the efficiency bottleneck. All the
works mainly focus on limitation 1, and the limitation 2&3
remains in the LSTF problem. To enhance the prediction ca-
pacity, we will tackle all of them and achieve improvement
beyond efficiency in the proposed Informer.

To this end, our work delves explicitly into these three is-
sues. We investigate the sparsity in the self-attention mecha-
nism, make improvements of network components, and con-
duct extensive experiments. The contributions of this paper
are summarized as follows:

• We propose Informer to successfully enhance the pre-
diction capacity in the LSTF problem, which validates
the Transformer-like model’s potential value to cap-
ture individual long-range dependency between long
sequence time-series outputs and inputs.

• We propose ProbSparse Self-attention mechanism to
efficiently replace the canonical self-attention and
it achieves the O(L logL) time complexity and
O(L logL) memory usage.

• We propose Self-attention Distilling operation privi-
leges dominating attention scores in J-stacking layers
and sharply reduce the total space complexity to be
O((2− ε)L logL).

• We propose Generative Style Decoder to acquire long
sequence output with only one forward step needed,
simultaneously avoiding cumulative error spreading
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Figure 2: An overall graph of the Informer model. The
left part is Encoder, and it receives massive long sequence
inputs (the green series). We have replaced the canonical
self-attention with the proposed ProbSparse self-attention.
The blue trapezoid is the self-attention distilling operation
to extract dominating attention, reducing the network size
sharply. The layer stacking replicas improve the robustness.
For the right part, the decoder receives long sequence inputs,
pads the target elements into zero, measures the weighted
attention composition of the feature map, and instantly pre-
dicts output elements (orange series) in a generative style.

during the inference phase.

2 Preliminary
We first provide the problem definition. Under the rolling
forecasting setting with a fixed size window, we have
the input X t = {xt1, . . . ,xtLx | x

t
i ∈ Rdx} at time t,

and output is to predict corresponding sequence Yt =
{yt1, . . . ,ytLy | y

t
i ∈ Rdy}. LSTF problem encourages a

longer output’s length Ly than previous works (Cho et al.
2014; Sutskever, Vinyals, and Le 2014) and the feature di-
mension is not limited to univariate case (dy ≥ 1).

Encoder-decoder architecture Many popular models are
devised to “encode” the input representations X t into a hid-
den state representations Ht and “decode” an output rep-
resentations Yt from Ht = {ht1, . . . ,htLh}. The inference
involves a step-by-step process named “dynamic decoding”,
where the decoder computes a new hidden state htk+1 from
the previous state htk and other necessary outputs from k-th
step then predicts the (k + 1)-th sequence ytk+1.

Input Representation A uniform input representation is
given to enhance the global positional context and local tem-
poral context of time-series inputs. To avoid trivializing de-
scription, we put the details in Appendix B.

3 Methodology
Existing methods for time-series forecasting can be roughly
grouped into two categories1. Classical time-series mod-
els serve as a reliable workhorse for time-series forecast-
ing (Box et al. 2015; Ray 1990; Seeger et al. 2017; Seeger,

1Due to the space limitation, a complete related work survey is
provided in Appendix A.



Salinas, and Flunkert 2016), and deep learning techniques
mainly develop an encoder-decoder prediction paradigm by
using RNN and their variants (Hochreiter and Schmidhuber
1997; Li et al. 2018; Yu et al. 2017). Our proposed Informer
holds the encoder-decoder architecture while targeting the
LSTF problem. Please refer to Fig.(2) for an overview and
the following sections for details.

Efficient Self-attention Mechanism
The canonical self-attention in (Vaswani et al. 2017) is
defined on receiving the tuple input (query, key, value)
and performs the scaled dot-product as A(Q,K,V) =

Softmax(QK>√
d

)V, where Q ∈ RLQ×d, K ∈ RLK×d,
V ∈ RLV ×d and d is the input dimension. To further discuss
the self-attention mechanism, let qi, ki, vi stand for the i-th
row in Q, K, V respectively. Following the formulation in
(Tsai et al. 2019), the i-th query’s attention is defined as a
kernel smoother in a probability form:

A(qi,K,V) =
∑
j

k(qi,kj)∑
l k(qi,kl)

vj = Ep(kj |qi)[vj ] , (1)

where p(kj |qi) =
k(qi,kj)∑
l k(qi,kl)

and k(qi,kj) selects

the asymmetric exponential kernel exp(
qik
>
j√
d

). The self-
attention combines the values and acquires outputs based on
computing the probability p(kj |qi). It requires the quadratic
times dot-product computation and O(LQLK) memory us-
age, which is the major drawback in enhancing prediction
capacity.

Some previous attempts have revealed that the distribution
of self-attention probability has potential sparsity, and they
have designed some “selective” counting strategies on all
p(kj |qi) without significantly affecting performance. The
Sparse Transformer (Child et al. 2019) incorporates both
the row outputs and column inputs, in which the sparsity
arises from the separated spatial correlation. The LogSparse
Transformer (Li et al. 2019) notices the cyclical pattern in
self-attention and forces each cell to attend to its previous
one by an exponential step size. The Longformer (Beltagy,
Peters, and Cohan 2020) extend previous two works to more
complicated sparse configuration. However, they are limited
to theoretical analysis from following heuristic methods and
tackle each multi-head self-attention with the same strategy,
which narrows its further improvement.

To motivate our approach, we first perform a qualitative
assessment on the learned attention patterns of the canoni-
cal self-attention. The “sparsity” self-attention score forms
a long tail distribution (see Appendix C for details), i.e., a
few dot-product pairs contribute to the major attention, and
others can be ignored. Then, the next question is how to dis-
tinguish them?

Query Sparsity Measurement From Eq.(1), the i-th
query’s attention on all the keys are defined as a probabil-
ity p(kj |qi) and the output is its composition with values v.
The dominant dot-product pairs encourage the correspond-
ing query’s attention probability distribution away from the
uniform distribution. If p(kj |qi) is close to a uniform dis-

tribution q(kj |qi) = 1
LK

, the self-attention becomes a triv-
ial sum of values V and is redundant to the residential in-
put. Naturally, the “likeness” between distribution p and
q can be used to distinguish the “important” queries. We
measure the “likeness” through Kullback-Leibler divergence
KL(q||p) = ln

∑LK
l=1 e

qik
>
l /
√
d − 1

LK

∑LK
j=1 qik

>
j /
√
d −

lnLK . Dropping the constant, we define the i-th query’s
sparsity measurement as

M(qi,K) = ln

LK∑
j=1

e
qik
>
j√
d − 1

LK

LK∑
j=1

qik
>
j√
d

, (2)

where the first term is the Log-Sum-Exp (LSE) of qi on
all the keys, and the second term is the arithmetic mean on
them. If the i-th query gains a larger M(qi,K), its atten-
tion probability p is more “diverse” and has a high chance to
contain the dominate dot-product pairs in the header field of
the long tail self-attention distribution.

ProbSparse Self-attention Based on the proposed mea-
surement, we have the ProbSparse Self-attention by allow-
ing each key only to attend to the u dominant queries

A(Q,K,V) = Softmax(
QK>√

d
)V , (3)

where Q is a sparse matrix of the same size of q and it
only contains the Top-u queries under the sparsity measure-
ment M(q,K). Controlled by a constant sampling factor c,
we set u = c · lnLQ, which makes the ProbSparse self-
attention only need to calculate O(lnLQ) dot-product for
each query-key lookup and the layer memory usage main-
tains O(LK lnLQ).

However, the traversing of all queries for the measure-
ment M(qi,K) requires calculating each dot-product pairs,
i.e. quadratically O(LQLK), and the LSE operation has the
potential numerical stability issue. Motivated by this, we
proposed an approximation to the query sparsity measure-
ment.
Lemma 1. For each query qi ∈ Rd and kj ∈ Rd in the
keys set K, we have the bounds as lnLK ≤ M(qi,K) ≤
maxj{

qik
>
j√
d
} − 1

LK

∑LK
j=1{

qik
>
j√
d
}+ lnLK . When qi ∈ K,

it also holds.
From the Lemma 1 (proof is given in Appendix D.1), we

propose the max-mean measurement as

M(qi,K) = max
j
{
qik
>
j√
d
} − 1

LK

LK∑
j=1

qik
>
j√
d

. (4)

The order of Top-u holds in the boundary relaxation
with Proposition 1 (refers proof in Appendix D.2). Under
the long tail distribution, we only need randomly sample
U = LQ lnLK dot-product pairs to calculate theM(qi,K),
i.e. filling other pairs with zero. We select sparse Top-u from
them as Q. The max-operator in M(qi,K) is less sensitive
to zero values and is numerical stable. In practice, the in-
put length of queries and keys are typically equivalent, i.e
LQ = LK = L such that the total ProbSparse self-attention
time complexity and space complexity are O(L lnL).
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Figure 3: The architecture of Informer’s encoder. (1) each horizontal stack stands for an individual one of the encoder replicas
in Fig.(2); (2) the upper stack is the main stack, which receives the whole input sequence, while the second stacks take half
slices of the input; (3) the red layers are dot product matrixes of self-attention mechanism, and it gets cascade decrease by
applying self-attention distilling on each layer; (4) concate the 2 stack’s feature map as the encoder’s output.

Proposition 1. Assuming that kj ∼ N (µ,Σ) and we let qki
denote set {(qik>j )/

√
d | j = 1, . . . , LK}, then ∀Mm =

maxiM(qi,K) there exist κ > 0 such that: in the interval
∀q1,q2 ∈ {q|M(q,K) ∈ [Mm,Mm−κ)}, ifM(q1,K) >
M(q2,K) and Var(qk1) > Var(qk2), we have high prob-
ability that M(q1,K) > M(q2,K). To be simplify, an esti-
mation of the probability is given in the proof.

Encoder: Allowing for processing longer sequential
inputs under the memory usage limitation
The encoder is designed to extract the robust long-range de-
pendency of long sequential inputs. After the input repre-
sentation, the t-th sequence input X t has been shaped into
a matrix Xt

feed en ∈ RLx×dmodel . We give a sketch of the en-
coder in Fig.(3) for clarity.

Self-attention Distilling As the natural consequence of
the ProbSparse Self-attention mechanism, the encoder’s fea-
ture map have redundant combinations of value V. We use
the distilling operation to privilege the superior ones with
dominating features and make a focused self-attention fea-
ture map in the next layer. It trims the input’s time dimension
sharply, seeing the n-heads weights matrix (overlapping red
squares) of Attention blocks in Fig.(3). Inspired by the di-
lated convolution (Yu, Koltun, and Funkhouser 2017; Gupta
and Rush 2017), our “distilling” procedure forwards from
j-th layer into (j + 1)-th layer as

Xt
j+1 = MaxPool

(
ELU( Conv1d( [Xt

j ]AB ) )
)

, (5)

where [·]AB contains the Multi-head ProbSparse self-
attention and the essential operations in attention block,
and Conv1d(·) performs an 1-D convolutional filters (ker-
nel width=3) on time dimension with the ELU(·) activa-
tion function (Clevert, Unterthiner, and Hochreiter 2016).
We add a max-pooling layer with stride 2 and down-sample

Xt into its half slice after stacking a layer, which reduces
the whole memory usage to be O((2 − ε)L logL), where ε
is a small number. To enhance the robustness of the distill-
ing operation, we build halving replicas of the main stack
and progressively decrease the number of self-attention dis-
tilling layers by dropping one layer at a time, like a pyramid
in Fig.(3), such that their output dimension is aligned. Thus,
we concatenate all the stacks’ outputs and have the final hid-
den representation of encoder.

Decoder: Generating long sequential outputs
through one forward procedure
We use a standard decoder structure (Vaswani et al. 2017) in
Fig.(2), and it is composed of a stack of 2 identical multi-
head attention layers. However, the generative inference is
employed to alleviate the speed plunge in long prediction.
We feed the decoder with following vectors as

Xt
feed de = Concat(Xt

token,X
t
0) ∈ R(Ltoken+Ly)×dmodel ,

(6)
where Xt

token ∈ RLtoken×dmodel is the start token, Xt
0 ∈

RLy×dmodel is a placeholder for the target sequence (set
scalar as 0). Masked multi-head attention is applied in the
ProbSparse self-attention computing by setting masked dot-
products to −∞. It prevents each position from attending
to coming positions, which avoids auto-regressive. A fully
connected layer acquires the final output, and its outsize dy
depends on whether we are performing a univariate forecast-
ing or a multivariate one.

Generative Inference Start token is an efficient tech-
nique in NLP’s “dynamic decoding” (Devlin et al. 2018),
and we extend it into a generative way. Instead of choos-
ing a specific flag as the token, we sample a Ltoken long se-
quence in the input sequence, which is an earlier slice before



the output sequence. Take predicting 168 points as an ex-
ample (7-day temperature prediction) in Fig.(2(b)), we will
take the known 5 days before the target sequence as “start-
token”, and feed the generative-style inference decoder with
Xfeed de = {X5d,X0}. The X0 contains target sequence’s
time stamp, i.e. the context at the target week. Note that our
proposed decoder predicts all the outputs by one forward
procedure and is free from the time consuming “dynamic
decoding” transaction in the trivial encoder-decoder archi-
tecture. A detailed performance comparison is given in the
computation efficiency section.

Loss function We choose the MSE loss function on pre-
diction w.r.t the target sequences, and the loss is propagated
back from the decoder’s outputs across the entire model.

4 Experiment
Datasets
We empirically perform experiments on four datasets, in-
cluding 2 collected real-world datasets for LSTF and 2 pub-
lic benchmark datasets.

ETT (Electricity Transformer Temperature)2: The ETT is
a crucial indicator in the electric power long-term deploy-
ment. We collected 2 years data from two separated counties
in China. To explorer the granularity on the LSTF problem,
we create separate datasets as {ETTh1, ETTh2} for 1-hour-
level and ETTm1 for 15-minutes-level. Each data point con-
sists of the target value ”oil temperature” and 6 power load
features. The train/val/test is 12/4/4 months.

ECL (Electricity Consuming Load)3: It collects the elec-
tricity consumption (Kwh) of 321 clients. Due to the missing
data (Li et al. 2019), we convert the dataset into hourly con-
sumption of 2 years and set ‘MT 320’ as the target value.
The train/val/test is 15/3/4 months.

Weather 4: This dataset contains local climatological data
for nearly 1,600 U.S. locations, 4 years from 2010 to 2013,
where data points are collected every 1 hour. Each data point
consists of the target value ”wet bulb” and 11 climate fea-
tures. The train/val/test is 28/10/10 months.

Experimental Details
We briefly summarize basics, and more information on net-
work components and setups are given in Appendix E.

Baselines: The details of network components are given
in Appendix E.1. We have selected 5 time-series fore-
casting methods as comparison, including ARIMA (Ariyo,
Adewumi, and Ayo 2014), Prophet (Taylor and Letham
2018), LSTMa (Bahdanau, Cho, and Bengio 2015) and
LSTnet (Lai et al. 2018) and DeepAR (Flunkert, Salinas,
and Gasthaus 2017). To better explore the ProbSparse self-
attention’s performance in our proposed Informer, we in-
corporate the canonical self-attention variant (Informer†),
the efficient variant Reformer (Kitaev, Kaiser, and Levskaya

2We collected the ETT dataset and published it at https://
github.com/zhouhaoyi/ETDataset.

3ECL dataset was acquired at https://archive.ics.uci.edu/ml/
datasets/ElectricityLoadDiagrams20112014

4Weather dataset was acquired at https://www.ncdc.noaa.gov/
orders/qclcd/

2019) and the most related work LogSparse self-attention
(Li et al. 2019) in the experiments.

Hyper-parameter tuning: We conduct grid search over
the hyper-parameters and detail ranges are given in Ap-
pendix E.3. Informer contains a 3-layer stack and a 2-layer
stack (1/4 input) in encoder, 2-layer decoder. Our proposed
methods are optimized with Adam optimizer and its learn-
ing rate starts from 1e−4, decaying 10 times smaller every
2 epochs and total epochs is 10. We set comparison meth-
ods as recommended and the batch size is 32. Setup: The
input of each dataset is zero-mean normalized. Under the
LSTF settings, we prolong the prediction windows size Ly
progressively, i.e. {1d, 2d, 7d, 14d, 30d, 40d} in {ETTh,
ECL, Weather}, {6h, 12h, 24h, 72h, 168h} in ETTm. Met-
rics: We used two evaluation metrics, including MSE =
1
n

∑n
i=1(y− ŷ)2 and MAE = 1

n

∑n
i=1 |y− ŷ| on each pre-

diction window (averaging for multivariate prediction), and
rolling the whole set with stride = 1. Platform: All models
were training/testing on a single Nvidia V100 32GB GPU.

Results and Analysis
Table 1 and Table 2 summarize the univariate/multivariate
evaluation results of all the methods on 4 datasets. We grad-
ually prolong the prediction horizon as a higher requirement
of prediction capacity. To claim a fair comparison, we have
precisely controlled the problem setting to make LSTF is
tractable on one single GPU for every method. The best re-
sults are highlighted in boldface.

Univariate Time-series Forecasting Under this setting,
each method attains predictions in a single variable over
time. From Table 1, we observe that: (1) The proposed
model Informer greatly improves the inference performance
(wining-counts in the last column) across all datasets, and
their predict error rises smoothly and slowly within the
growing prediction horizon. That demonstrates the success
of Informer in enhancing the prediction capacity in the LSTF
problem. (2) The Informer beats its canonical degradation
Informer† mostly in wining-counts, i.e., 28>14, which sup-
ports the query sparsity assumption in providing a compa-
rable attention feature map. Our proposed method also out-
performs the most related work LogTrans and Reformer. We
note that the Reformer keeps dynamic decoding and per-
forms poorly in LSTF, while other methods benefit from
the generative style decoder as nonautoregressive predic-
tors. (3) The Informer model shows significantly better re-
sults than recurrent neural networks LSTMa. Our method
has a MSE decrease of 41.5% (at 168), 60.7% (at 336) and
60.7% (at 720). This reveals a shorter network path in the
self-attention mechanism acquires better prediction capac-
ity than the RNN-based models. (4) Our proposed method
achieves better results than DeepAR, ARIMA and Prophet
on MSE by decreasing 20.9% (at 168), 61.2% (at 336), and
51.3% (at 720) in average. On the ECL dataset, DeepAR per-
forms better on shorter horizons (≤ 336), and our method
surpasses on longer horizons. We attribute this to a specific
example, in which the effectiveness of prediction capacity is
reflected with the problem scalability.

Multivariate Time-series Forecasting Within this set-
ting, some univariate methods are inappropriate, and LSTnet

https://github.com/zhouhaoyi/ETDataset
https://github.com/zhouhaoyi/ETDataset
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://www.ncdc.noaa.gov/orders/qclcd/
https://www.ncdc.noaa.gov/orders/qclcd/


Table 1: Univariate long sequence time-series forecasting results on four datasets (five cases)

Methods Metric ETTh1 ETTh2 ETTm1 Weather ECL count24 48 168 336 720 24 48 168 336 720 24 48 96 288 672 24 48 168 336 720 48 168 336 720 960

Informer MSE 0.062 0.108 0.146 0.208 0.193 0.079 0.103 0.143 0.171 0.184 0.051 0.092 0.119 0.181 0.204 0.107 0.164 0.226 0.241 0.259 0.335 0.408 0.451 0.466 0.470 28MAE 0.178 0.245 0.294 0.363 0.365 0.206 0.240 0.296 0.327 0.339 0.153 0.217 0.249 0.320 0.345 0.223 0.282 0.338 0.352 0.367 0.423 0.466 0.488 0.499 0.520

Informer† MSE 0.046 0.129 0.183 0.189 0.201 0.083 0.111 0.154 0.166 0.181 0.054 0.087 0.115 0.182 0.207 0.107 0.167 0.237 0.252 0.263 0.304 0.416 0.479 0.482 0.538 14MAE 0.152 0.274 0.337 0.346 0.357 0.213 0.249 0.306 0.323 0.338 0.160 0.210 0.248 0.323 0.353 0.220 0.284 0.352 0.366 0.374 0.404 0.478 0.508 0.515 0.560

LogTrans MSE 0.059 0.111 0.155 0.196 0.217 0.080 0.107 0.176 0.175 0.185 0.061 0.156 0.229 0.362 0.450 0.120 0.182 0.267 0.299 0.274 0.360 0.410 0.482 0.522 0.546 0MAE 0.191 0.263 0.309 0.370 0.379 0.221 0.262 0.344 0.345 0.349 0.192 0.322 0.397 0.512 0.582 0.247 0.312 0.387 0.416 0.387 0.455 0.481 0.521 0.551 0.563

Reformer MSE 0.172 0.228 1.460 1.728 1.948 0.235 0.434 0.961 1.532 1.862 0.055 0.229 0.854 0.962 1.605 0.197 0.268 0.590 1.692 1.887 0.917 1.635 3.448 4.745 6.841 0MAE 0.319 0.395 1.089 0.978 1.226 0.369 0.505 0.797 1.060 1.543 0.170 0.340 0.675 1.107 1.312 0.329 0.381 0.552 0.945 1.352 0.840 1.515 2.088 3.913 4.913

LSTMa MSE 0.094 0.175 0.210 0.556 0.635 0.135 0.172 0.359 0.516 0.562 0.099 0.289 0.255 0.480 0.988 0.107 0.166 0.305 0.404 0.784 0.475 0.703 1.186 1.473 1.493 1MAE 0.232 0.322 0.352 0.644 0.704 0.275 0.318 0.470 0.548 0.613 0.201 0.371 0.370 0.528 0.805 0.222 0.298 0.404 0.476 0.709 0.509 0.617 0.854 0.910 0.9260

DeepAR MSE 0.089 0.126 0.213 0.403 0.614 0.080 0.125 0.179 0.568 0.367 0.075 0.197 0.336 0.908 2.371 0.108 0.177 0.259 0.535 0.407 0.188 0.295 0.388 0.471 0.583 6MAE 0.242 0.291 0.382 0.496 0.643 0.229 0.283 0.346 0.555 0.488 0.205 0.332 0.450 0.739 1.256 0.242 0.313 0.397 0.580 0.506 0.317 0.398 0.471 0.507 0.583

ARIMA MSE 0.086 0.133 0.364 0.428 0.613 3.538 3.168 2.768 2.717 2.822 0.074 0.157 0.242 0.424 0.565 0.199 0.247 0.471 0.678 0.996 0.861 1.014 1.102 1.213 1.322 1MAE 0.190 0.242 0.456 0.537 0.684 0.407 0.440 0.555 0.680 0.952 0.168 0.274 0.357 0.500 0.605 0.321 0.375 0.541 0.666 0.853 0.726 0.797 0.834 0.883 0.908

Prophet MSE 0.093 0.150 1.194 1.509 2.685 0.179 0.284 2.113 2.052 3.287 0.102 0.117 0.146 0.414 2.671 0.280 0.421 2.409 1.931 3.759 0.506 2.711 2.220 4.201 6.827 0MAE 0.241 0.300 0.721 1.766 3.155 0.345 0.428 1.018 2.487 4.592 0.256 0.273 0.304 0.482 1.112 0.403 0.492 1.092 2.406 1.030 0.557 1.239 3.029 1.363 4.184

Table 2: Multivariate long sequence time-series forecasting results on four datasets (five cases)

Methods Metric ETTh1 ETTh2 ETTm1 Weather ECL count24 48 168 336 720 24 48 168 336 720 24 48 96 288 672 24 48 168 336 720 48 168 336 720 960

Informer MSE 0.509 0.551 0.878 0.884 0.941 0.446 0.934 1.512 1.665 2.340 0.325 0.472 0.642 1.219 1.651 0.353 0.464 0.592 0.623 0.685 0.269 0.300 0.311 0.308 0.328 32MAE 0.523 0.563 0.722 0.753 0.768 0.523 0.733 0.996 1.035 1.209 0.440 0.537 0.626 0.871 1.002 0.381 0.455 0.531 0.546 0.575 0.351 0.376 0.385 0.385 0.406

Informer† MSE 0.550 0.602 0.893 0.836 0.981 0.683 0.977 1.873 1.374 2.493 0.324 0.446 0.651 1.342 1.661 0.355 0.471 0.613 0.626 0.680 0.269 0.281 0.309 0.314 0.356 12MAE 0.551 0.581 0.733 0.729 0.779 0.637 0.793 1.094 0.935 1.253 0.440 0.508 0.616 0.927 1.001 0.383 0.456 0.544 0.548 0.569 0.351 0.366 0.383 0.388 0.394

LogTrans MSE 0.656 0.670 0.888 0.942 1.109 0.726 1.728 3.944 3.711 2.817 0.341 0.495 0.674 1.728 1.865 0.365 0.496 0.649 0.666 0.741 0.267 0.290 0.305 0.311 0.333 2MAE 0.600 0.611 0.766 0.766 0.843 0.638 0.944 1.573 1.587 1.356 0.495 0.527 0.674 1.656 1.721 0.405 0.485 0.573 0.584 0.611 0.366 0.382 0.395 0.397 0.413

Reformer MSE 0.887 1.159 1.686 1.919 2.177 1.381 1.715 4.484 3.798 5.111 0.598 0.952 1.267 1.632 1.943 0.583 0.633 1.228 1.770 2.548 1.312 1.453 1.507 1.883 1.973 0MAE 0.630 0.750 0.996 1.090 1.218 1.475 1.585 1.650 1.508 1.793 0.489 0.645 0.795 0.886 1.006 0.497 0.556 0.763 0.997 1.407 0.911 0.975 0.978 1.002 1.185

LSTMa MSE 0.536 0.616 1.058 1.152 1.682 1.049 1.331 3.987 3.276 3.711 0.511 1.280 1.195 1.598 2.530 0.476 0.763 0.948 1.497 1.314 0.388 0.492 0.778 1.528 1.343 0MAE 0.528 0.577 0.725 0.794 1.018 0.689 0.805 1.560 1.375 1.520 0.517 0.819 0.785 0.952 1.259 0.464 0.589 0.713 0.889 0.875 0.444 0.498 0.629 0.945 0.886

LSTnet MSE 1.175 1.344 1.865 2.477 1.925 2.632 3.487 1.442 1.372 2.403 1.856 1.909 2.654 1.009 1.681 0.575 0.622 0.676 0.714 0.773 0.279 0.318 0.357 0.442 0.473 4MAE 0.793 0.864 1.092 1.193 1.084 1.337 1.577 2.389 2.429 3.403 1.058 1.085 1.378 1.902 2.701 0.507 0.553 0.585 0.607 0.643 0.337 0.368 0.391 0.433 0.443

is the state-of-art baseline. On the contrary, our proposed In-
former is easy to change from univariate prediction to mul-
tivariate one by adjusting the final FCN layer. From Table 2,
we observe that: (1) The proposed model Informer greatly
outperforms other methods and the findings 1 & 2 in the uni-
variate settings still hold for the multivariate time-series. (2)
The Informer model shows better results than RNN-based
LSTMa and CNN-based LSTnet, and the MSE decreases
9.5% (at 168), 2.1% (at 336), 13.8% (at 720) in average.
Compared with the univariate results, the overwhelming per-
formance is reduced, and such phenomena can be caused by
the anisotropy in feature dimensions’ prediction capacity. It
beyonds this paper’s scope, and we explore it in future work.

LSTF with Granularity Consideration We perform an
additional comparison trying to explore the performance
with various granularities. The sequences {96, 288, 672}
of ETTm1 (minutes-level) are aligned with {24, 48, 168}
of ETTh1 (hour-level). The proposed Informer outperforms
other baselines even if the sequences are at different granu-
larity levels.

Parameter Sensitivity
We perform the sensitivity analysis of the proposed In-
former model on ETTh1 under the univariate setting. Input
Length: In Fig.(4(a)), when predicting short sequences (like
48), initially increasing input length of encoder/decoder de-
grades performance, but further increasing causes the MSE
to drop because it brings repeat short-term patterns. How-
ever, the MSE gets lower with longer inputs in predicting
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Figure 4: The parameters’ sensitivity of Informer.

long sequences (like 168). Because the longer encoder input
may contain more dependency, and the longer decoder token
has rich local information. Sampling Factor: The sampling
factor controls the information bandwidth of ProbSparse
self-attention in Eq.(3). We start from the small factor (=3)
to large ones, and the general performance increases a little
and stabilizes at last in Fig.(4(b)). It verifies our query spar-
sity assumption that there are redundant dot-product pairs in
the self-attention mechanism. We set the sample factor c = 5
(the red line) in practice. The Number of Layer Stacking:
The replica of Layers is complementary for the self-attention
distilling, and we investigate each stack {L, L/2, L/4}’s be-
havior in Fig.(4(c)). The longer stack is more sensitive to
inputs, partly due to receiving more long-term information.
Our method’s selection (the red line), i.e., combining L and
L/4, is the most robust strategy.



Table 3: Ablation of ProbSparse mechanism
Prediction length 336 720
Encoder’s input 336 720 1440 720 1440 2880

Informer MSE 0.243 0.225 0.212 0.258 0.238 0.224
MAE 0.487 0.404 0.381 0.503 0.399 0.387

Informer†
MSE 0.214 0.205 - 0.235 - -
MAE 0.369 0.364 - 0.401 - -

LogTrans MSE 0.256 0.233 - 0.264 - -
MAE 0.496 0.412 - 0.523 - -

Reformer MSE 1.848 1.832 1.817 2.094 2.055 2.032
MAE 1.054 1.027 1.010 1.363 1.306 1.334

1 Informer† uses the canonical self-attention mechanism.
2 The ‘-’ indicates failure for out-of-memory.

Table 4: Ablation of Self-attention Distilling
Prediction length 336 480
Encoder’s input 336 480 720 960 1200 336 480 720 960 1200

Informer†
MSE 0.201 0.175 0.215 0.185 0.172 0.136 0.213 0.178 0.146 0.121
MAE 0.360 0.335 0.366 0.355 0.321 0.282 0.382 0.345 0.296 0.272

Informer‡
MSE 0.187 0.182 0.177 - - 0.208 0.182 0.168 - -
MAE 0.330 0.341 0.329 - - 0.384 0.337 0.304 - -

1 Informer‡ removes the self-attention distilling from Informer† .
2 The ‘-’ indicates failure for out-of-memory.

Table 5: Ablation of Generative Style Decoder
Prediction length 336 480
Prediction offset +0 +12 +24 +48 +0 +48 +96 +168

Informer‡
MSE 0.101 0.102 0.103 0.103 0.155 0.158 0.160 0.165
MAE 0.215 0.218 0.223 0.227 0.317 0.397 0.399 0.406

Informer§
MSE 0.152 - - - 0.462 - - -
MAE 0.294 - - - 0.595 - - -

1 Informer§ replaces our decoder with dynamic decoding one in Informer‡ .
2 The ‘-’ indicates failure for the unacceptable metric results.

Ablation Study: How Informer works?
We also conducted additional experiments on ETTh1 with
ablation consideration.

The performance of ProbSparse self-attention mech-
anism In the overall results Table 1 & 2, we limited the
problem setting to make the memory usage feasible for the
canonical self-attention. In this study, we compare our meth-
ods with LogTrans and Reformer, and thoroughly explore
their extreme performance. To isolate the memory efficient
problem, we first reduce settings as {batch size=8, heads=8,
dim=64}, and maintain other setups in the univariate case.
In Table 3, the ProbSparse self-attention shows better per-
formance than the counterparts. The LogTrans gets OOM in
extreme cases for its public implementation is the mask of
the full-attention, which still hasO(L2) memory usage. Our
proposed ProbSparse self-attention avoids this from the sim-
plicity brought by the query sparsity assumption in Eq.(4),
referring to the pseudo-code in Appendix E.2, and reaches
smaller memory usage.

The performance of self-attention distilling In this
study, we use Informer† as the benchmark to eliminate
additional effects of ProbSparse self-attention. The other
experimental setup is aligned with the settings of uni-
variate Time-series. From the Table 4, Informer† has ful-
filled all experiments and achieves better performance af-
ter taking advantage of long sequence inputs. The compar-
ison method Informer‡ removes the distilling operation and
reaches OOM with longer inputs (> 720). Regarding the
benefits of long sequence inputs in the LSTF problem, we
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Figure 5: The total runtime of training/testing phase.

Table 6: L-related computation statics of each layer

Methods Training Testing
Time Complexity Memory Usage Steps

Informer O(L logL) O(L logL) 1
Transformer O(L2) O(L2) L

LogTrans O(L logL) O(L2) 1?

Reformer O(L logL) O(L logL) L
LSTM O(L) O(L) L

1 The LSTnet is hard to have a closed form.

conclude that the self-attention distilling is worth adopting,
especially when a longer prediction is required.

The performance of generative style decoder In this
study, we testify the potential value of our decoder in acquir-
ing a “generative” results. Unlike the existing methods, the
labels and outputs are forced to be aligned in the training and
inference, our proposed decoder’s predicting relies solely on
the time stamp, which can predict with offsets. From Ta-
ble 5, we can see that the general prediction performance
of Informer‡ resists with the offset increasing, while the
counterpart fails for the dynamic decoding. It proves the de-
coder’s ability to capture individual long-range dependency
between arbitrary outputs and avoids error accumulation in
the inference.

Computation Efficiency
With the multivariate setting and each method’s current
finest implement, we perform a rigorous runtime compar-
ison in Fig.(5). During the training phase, the Informer
(red line) achieves the best training efficiency among
Transformer-based methods. During the testing phase, our
methods are much faster than others with the generative style
decoding. The comparisons of theoretical time complexity
and memory usage are summarized in Table 6, the per-
formance of Informer is aligned with runtime experiments.
Note that the LogTrans focus on the self-attention mecha-
nism, and we apply our proposed decoder in LogTrans for a
fair comparison (the ? in Table 6).

5 Conclusion
In this paper, we studied the long-sequence time-series fore-
casting problem and proposed Informer to predict long se-
quences. Specifically, we designed the ProbSparse self-
attention mechanism and distilling operation to handle the
challenges of quadratic time complexity and quadratic mem-
ory usage in vanilla Transformer. Also, the carefully de-
signed generative decoder alleviates the limitation of tra-
ditional encoder-decoder architecture. The experiments on
real-world data demonstrated the effectiveness of Informer
for enhancing the prediction capacity in LSTF problem.



Appendices
Appendix A Related Work

We provide a literature review of the long sequence time-
series forecasting (LSTF) problem below.

Time-series Forecasting Existing methods for time-
series forecasting can be roughly grouped into two cate-
gories: classical models and deep learning based methods.
Classical time-series models serve as a reliable workhorse
for time-series forecasting, with appealing properties such as
interpretability and theoretical guarantees (Box et al. 2015;
Ray 1990). Modern extensions include the support for miss-
ing data (Seeger et al. 2017) and multiple data types (Seeger,
Salinas, and Flunkert 2016). Deep learning based methods
mainly develop sequence to sequence prediction paradigm
by using RNN and their variants, achieving ground-breaking
performance (Hochreiter and Schmidhuber 1997; Li et al.
2018; Yu et al. 2017). Despite the substantial progress, ex-
isting algorithms still fail to predict long sequence time
series with satisfying accuracy. Typical state-of-the-art ap-
proaches (Seeger et al. 2017; Seeger, Salinas, and Flunkert
2016), especially deep-learning methods (Yu et al. 2017; Qin
et al. 2017; Flunkert, Salinas, and Gasthaus 2017; Mukher-
jee et al. 2018; Wen et al. 2017), remain as a sequence
to sequence prediction paradigm with step-by-step process,
which have the following limitations: (i) Even though they
may achieve accurate prediction for one step forward, they
often suffer from accumulated error from the dynamic de-
coding, resulting in the large errors for LSTF problem (Liu
et al. 2019; Qin et al. 2017). The prediction accuracy decays
along with the increase of the predicted sequence length.
(ii) Due to the problem of vanishing gradient and memory
constraint (Sutskever, Vinyals, and Le 2014), most existing
methods cannot learn from the past behavior of the whole
history of the time-series. In our work, the Informer is de-
signed to address this two limitations.

Long sequence input problem From the above discus-
sion, we refer to the second limitation as to the long se-
quence time-series input (LSTI) problem. We will explore
related works and draw a comparison between our LSTF
problem. The researchers truncate / summarize / sample the
input sequence to handle a very long sequence in practice,
but valuable data may be lost in making accurate predictions.
Instead of modifying inputs, Truncated BPTT (Aicher, Foti,
and Fox 2019) only uses last time steps to estimate the gra-
dients in weight updates, and Auxiliary Losses (Trinh et al.
2018) enhance the gradients flow by adding auxiliary gradi-
ents. Other attempts includes Recurrent Highway Networks
(Zilly et al. 2017) and Bootstrapping Regularizer (Cao and
Xu 2019). Theses methods try to improve the gradient flows
in the recurrent network’s long path, but the performance is
limited with the sequence length growing in the LSTI prob-
lem. CNN-based methods (Stoller et al. 2019; Bai, Kolter,
and Koltun 2018) use the convolutional filter to capture the
long term dependency, and their receptive fields grow ex-
ponentially with the stacking of layers, which hurts the se-
quence alignment. In the LSTI problem, the main task is to
enhance the model’s capacity of receiving long sequence in-

puts and extract the long-range dependency from these in-
puts. But the LSTF problem seeks to enhance the model’s
prediction capacity of forecasting long sequence outputs,
which requires establishing the long-range dependency be-
tween outputs and inputs. Thus, the above methods are not
feasible for LSTF directly.

Attention model Bahdanau et al. firstly proposed the ad-
dictive attention (Bahdanau, Cho, and Bengio 2015) to im-
prove the word alignment of the encoder-decoder architec-
ture in the translation task. Then, its variant (Luong, Pham,
and Manning 2015) has proposed the widely used loca-
tion, general, and dot-product attention. The popular self-
attention based Transformer (Vaswani et al. 2017) has re-
cently been proposed as new thinking of sequence modeling
and has achieved great success, especially in the NLP field.
The ability of better sequence alignment has been validated
by applying it to translation, speech, music, and image gen-
eration. In our work, the Informer takes advantage of its se-
quence alignment ability and makes it amenable to the LSTF
problem.

Transformer-based time-series model The most related
works (Song et al. 2018; Ma et al. 2019; Li et al. 2019) all
start from a trail on applying Transformer in time-series data
and fail in LSTF forecasting as they use the vanilla Trans-
former. And some other works (Child et al. 2019; Li et al.
2019) noticed the sparsity in self-attention mechanism and
we have discussed them in the main context.

Appendix B The Uniform Input
Representation

The RNN models (Schuster and Paliwal 1997; Hochre-
iter and Schmidhuber 1997; Chung et al. 2014; Sutskever,
Vinyals, and Le 2014; Qin et al. 2017; Chang et al. 2018)
capture the time-series pattern by the recurrent structure it-
self and barely relies on time stamps. The vanilla trans-
former (Vaswani et al. 2017; Devlin et al. 2018) uses point-
wise self-attention mechanism and the time stamps serve as
local positional context. However, in the LSTF problem, the
ability to capture long-range independence requires global
information like hierarchical time stamps (week, month and
year) and agnostic time stamps (holidays, events). These
are hardly leveraged in canonical self-attention and conse-
quent query-key mismatches between the encoder and de-
coder bring underlying degradation on the forecasting per-
formance. We propose a uniform input representation to mit-
igate the issue, the Fig.(6) gives an intuitive overview.

Assuming we have t-th sequence input X t and p types
of global time stamps and the feature dimension after in-
put representation is dmodel. We firstly preserve the lo-
cal context by using a fixed position embedding, i.e.
PE(pos,2j) = sin(pos/(2Lx)2j/dmodel), PE(pos,2j+1) =

cos(pos/(2Lx)2j/dmodel), where j ∈ {1, . . . , bdmodel/2c}.
Each global time stamp is employed by a learnable stamp
embeddings SE(pos) with limited vocab size (up to 60,
namely taking minutes as the finest granularity). That is,
the self-attention’s similarity computation can have access
to global context and the computation consuming is afford-
able on long inputs. To align the dimension, we project the
scalar context xti into dmodel-dim vector uti with 1-D convo-



lutional filters (kernel width=3, stride=1). Thus, we have the
feeding vector

X t
feed[i] = αut

i+PE(Lx×(t−1)+i, )+
∑
p

[SE(Lx×(t−1)+i)]p , (7)

where i ∈ {1, . . . , Lx}, and α is the factor balancing the
magnitude between the scalar projection and local/global
embeddings. We recommend α = 1 if the sequence input
has been normalized.
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Figure 6: The input representation of Informer. The inputs’s
embedding consists of three separate parts, a scalar projec-
tion, the local time stamp (Position) and global time stamp
embeddings (Minutes, Hours, Week, Month, Holiday etc.).

Appendix C The long tail distribution in
self-attention feature map

We have performed the vanilla Transformer on the ETTh1

dataset to investigate the distribution of self-attention fea-
ture map. We select the attention score of {Head1,Head7}
@ Layer1. The blue line in Fig.(7) forms a long tail distri-
bution, i.e. a few dot-product pairs contribute to the major
attention and others can be ignored.

Figure 7: The Softmax scores in the self-attention from a
4-layer canonical Transformer trained on ETTh1 dataset.

Appendix D Details of the proof
Proof of Lemma 1
Proof. For the individual qi, we can relax the discrete
keys into the continuous d-dimensional variable, i.e. vec-

tor kj . The query sparsity measurement is defined as the
M(qi,K) = ln

∑LK
j=1 e

qik
>
j /
√
d − 1

LK

∑LK
j=1(qik

>
j /
√
d).

Firstly, we look into the left part of the inequality. For
each query qi, the first term of the M(qi,K) becomes the
log-sum-exp of the inner-product of a fixed query qi and all
the keys , and we can define fi(K) = ln

∑LK
j=1 e

qik
>
j /
√
d.

From the Eq.(2) in the Log-sum-exp network(Calafiore,
Gaubert, and Possieri 2018) and the further analysis, the
function fi(K) is convex. Moreover, fi(K) add a linear
combination of kj makes the M(qi,K) to be the convex
function for a fixed query. Then we can take the deriva-
tion of the measurement with respect to the individual vec-

tor kj as ∂M(qi,K)
∂kj

= e
qik
>
j /
√
d∑LK

j=1 e
qik
>
j
/
√
d
· qi√

d
− 1

LK
· qi√

d
. To

reach the minimum value, we let ~∇M(qi) = ~0 and the fol-
lowing condition is acquired as qik

>
1 + lnLK = · · · =

qik
>
j + lnLK = · · · = ln

∑LK
j=1 e

qik
>
j . Naturally, it re-

quires k1 = k2 = · · · = kLK , and we have the measure-
ment’s minimum as lnLK , i.e.

M(qi,K) ≥ lnLK . (8)

Secondly, we look into the right part of the inequality. If
we select the largest inner-product maxj{qik>j /

√
d}, it is

easy that

M(qi,K) = ln

LK∑
j=1

e
qik
>
j√
d − 1

LK

LK∑
j=1

(
qik
>
j√
d

)

≤ ln(LK ·max
j
{
qik
>
j√
d
})− 1

LK

LK∑
j=1

(
qik
>
j√
d

)

= lnLK +max
j
{
qik
>
j√
d
}− 1

LK

LK∑
j=1

(
qik
>
j√
d

)

. (9)

Combine the Eq.(14) and Eq.(15), we have the results of
Lemma 1. When the key set is the same with the query set,
the above discussion also holds.

Proof of Proposition 1
Proof. To make the further discussion simplify, we
can note ai,j = qik

T
j /
√
d, thus define the ar-

ray Ai = [ai,1, · · · , ai,Lk ]. Moreover, we denote
1
LK

∑LK
j=1(qik

>
j /
√
d) = mean(Ai), then we can denote

M̄ (qi,K) = max(Ai)−mean(Ai), i = 1, 2.
As for M (qi,K), we denote each component ai,j =

mean(Ai) + ∆ai,j , j = 1, · · · , Lk, then we have the fol-
lowing:

M (qi,K) = ln

LK∑
j=1

eqik
>
j /
√
d − 1

LK

LK∑
j=1

(qik
>
j /
√
d)

= ln(ΣLkj=1e
mean(Ai)e∆ai,j )−mean(Ai)

= ln(emean(Ai)ΣLkj=1e
∆ai,j )−mean(Ai)

= ln(ΣLkj=1e
∆ai,j )

,



and it is easy to find ΣLkj=1∆ai,j = 0.

We define the function ES(Ai) = ΣLkj=1 exp(∆ai,j),
equivalently defines Ai = [∆ai,1, · · · ,∆ai,Lk ], and imme-
diately our proposition can be written as the equivalent form:

For ∀A1, A2, if
1. max(A1)−mean(A1) ≥ max(A2)−mean(A2)
2. Var(A1) > Var(A2)
Then we rephrase the original conclusion into more
general form that ES(A1) > ES(A2) with high proba-
bility, and the probability have positive correlation with
Var(A1)−Var(A2).

Furthermore, we consider a fine case, ∀Mm =
maxiM(qi,K) there exist κ > 0 such that in that interval
∀qi,qj ∈ {q|M(q,K) ∈ [Mm,Mm − κ)} if max(A1) −
mean(A1) ≥ max(A2) − mean(A2) and Var(A1) >
Var(A2), we have high probability that M(q1,K) >
M(q2,K),which is equivalent to ES(A1) > ES(A2).

In the original proposition, kj ∼ N (µ,Σ) follows multi-
variate Gaussian distribution, which means that k1, · · · , kn
are I.I.D Gaussian distribution, thus defined by the Wiener-
khinchin law of large Numbers, ai,j = qik

T
j /
√
d is one-

dimension Gaussian distribution with the expectation of
0 if n → ∞. So back to our definition, ∆a1,m ∼
N(0, σ2

1),∆a2,m ∼ N(0, σ2
2),∀m ∈ 1, · · · , Lk, and our

proposition is equivalent to a lognormal-distribution sum
problem.

A lognormal-distribution sum problem is equivalent
to approximating the distribution of ES(A1) accurately,
whose history is well-introduced in the articles (Dufresne
2008),(Vargasguzman 2005). Approximating lognormality
of sums of lognormals is a well-known rule of thumb, and
no general PDF function can be given for the sums of log-
normals. However, (Romeo, Da Costa, and Bardou 2003)
and (Hcine and Bouallegue 2015) pointed out that in most
cases, sums of lognormals is still a lognormal distribution,
and by applying central limits theorem in (Beaulieu 2011),
we can have a good approximation that ES(A1) is a log-

normal distribution, and we have E(ES(A1)) = ne
σ21
2 ,

Var(ES(A1)) = neσ
2
1 (eσ

2
1 − 1). Equally, E(ES(A2)) =

ne
σ22
2 , Var(ES(A2)) = neσ

2
2 (eσ

2
2 − 1).

We denoteB1 = ES(A1), B2 = ES(A2), and the proba-
bility Pr(B1−B2 > 0) is the final result of our proposition
in general conditions, with σ2

1 > σ2
2 WLOG. The difference

of lognormals is still a hard problem to solve.
By using the theorem given in(Lo 2012), which gives a

general approximation of the probability distribution on the
sums and difference for the lognormal distribution. Namely
S1 and S2 are two lognormal stochastic variables obeying
the stochastic differential equationsdSiSi = σidZi, i = 1, 2,
in which dZ1,2 presents a standard Weiner process associ-
ated with S1,2 respectively, and σ2

i = Var (lnSi), S± ≡
S1 ± S2,S±0 ≡ S10 ± S20. As for the joint probability dis-
tribution function P (S1, S2, t;S10, S20, t0), the value of S1

and S2 at time t > t0 are provided by their initial value
S10 and S20 at initial time t0. The Weiner process above is

equivalent to the lognormal distribution(Weiner and Solbrig
1984), and the conclusion below is written in general form
containing both the sum and difference of lognormal distri-
bution approximation denoting ± for sum + and difference
− respectively.

In boundary condition

P̄±
(
S±, t;S10, S20, t0 −→ t

)
= δ

(
S10 ± S20 − S±

)
,

their closed-form probability distribution functions are given
by

fLN
(
S̃±, t; S̃±0 , t0

)
=

1

S̃±
√

2πσ̃2
± (t− t0)

· exp

−
[
ln
(
S̃+/S̃+

0

)
+ (1/2)σ̃2

± (t− t0)
]2

2σ̃2
± (t− t0)

 .

It is an approximately normal distribution, and S̃+, S̃− are
lognormal random variables, S̃±0 are initial condition in t0
defined by Weiner process above. (Noticed that σ̃2

± (t− t0)
should be small to make this approximation valid.In our sim-
ulation experiment, we set t− t0 = 1 WLOG.) Since

S̃−0 = (S10 − S20) +

(
σ2
−

σ2
1 − σ2

2

)
(S10 + S20),

and
σ̃− =

(
σ2

1 − σ2
2

)
/ (2σ−)

σ− =
√
σ2

1 + σ2
2

Noticed that E(B1) > E(B2), Var(B1) > Var(B2), the
mean value and the variance of the approximate normal dis-
tribution shows positive correlation with σ2

1 − σ2
2 .Besides,

the closed-form PDF fLN
(
S̃±, t; S̃±0 , t0

)
also show pos-

itive correlation with σ2
1 − σ2

2 . Due to the limitation of
σ̃2
± (t− t0) should be small enough, such positive correla-

tion is not significant in our illustrative numerical experi-
ment.

By using Lie-Trotter Operator Splitting Method in (Lo
2012), we can give illustrative numeral examples for the
distribution of B1 − B2,in which the parameters are well
chosen to fit for our top-u approximation in actual LLLT
experiments. Figure shows that it is of high probability
that when σ2

1 > σ2
2 , the inequality holds that B1 > B2,

ES(A1) > ES(A2).
Finishing prooving our proposition in general conditions,

we can consider a more specific condition that if q1,q2 ∈
{q|M(q,K) ∈ [Mm,Mm − κ)},the proposition still holds
with high probability.

First, we have M(q1,k) = ln(B1) > (Mm − κ)
holds for ∀q1, q2 in this interval. Since we have proved

that E(B1)) = ne
σ21
2 , we can conclude that ∀qi in the

given interval,∃α, σ2
i > α, i = 1, 2. Since we have S̃−0 =

(S10 − S20) +
(

σ2
−

σ2
1−σ2

2

)
(S10 + S20), which also shows



Figure 8: Probability Density verses S1−S2 for the approx-
imate shifted lognormal

positive correlation with σ2
1 + σ2

2 > 2α, and positive cor-
relation with σ2

1 − σ2
2 . So due to the nature of the ap-

proximate normal distribution PDF, if σ2
1 > σ2

2 WLOG,

Pr(M(q1,k) > M(q2,k)) ≈ Φ(
S̃−0
σ̃−

) also shows positive
correlation with σ2

1 + σ2
2 > 2α.

We give an illustrative numerical examples of the approx-
imation above in Fig.(8). In our actual LTTnet experiment,
we choose Top-k of A1, A2, not the whole set.Actually,
we can make a naive assumption that in choosing top −
b 1

4Lkc variables of A1, A2 denoted as A
′

1, A
′

2,the varia-
tion σ1, σ2 don’t change significantly, but the expectation
E(A

′

1), E(A
′

2) ascends obviously, which leads to initial con-
dition S10, S20 ascends significantly, since the initial condi-
tion will be sampled from top − b 1

4Lkc variables, not the
whole set.

In our actual LTTnet experiment, we setU , namely choos-
ing around top − b 1

4Lkc of A1 and A2, it is guaranteed
that with over 99% probability that in the [Mm,Mm − κ)
interval, as shown in the black curve of Fig.(8). Typically
the condition 2 can be relaxed, and we can believe that
if q1, q2 fits the condition 1 in our proposition, we have
M(q1,K) > M(q2,K).

Appendix E Reproducibility
Details of the experiments
The details of proposed Informer model is summarized in
Table 7. For the ProbSparse self-attention mechanism, we
let d=32, n=16 and add residual connections, a position-
wise feed-forward network layer (inner-layer dimension is
2048) and a dropout layer (p = 0.1) likewise. Note that we
preserves 10% validation data for each dataset, so all the
experiments are conducted over 5 random train/val shifting
selection along time and the results are averaged over the
5 runs. All the datasets are performed standardization such
that the mean of variable is 0 and the standard deviation is 1.

Implement of the ProbSparse self-attention
We have implemented the ProbSparse self-attention in
Python 3.6 with Pytorch 1.0. The pseudo-code is given in

Table 7: The Informer network components in details

Encoder: N
Inputs 1x3 Conv1d Embedding (d = 512)

4

ProbSparse
Self-attention

Block

Multi-head ProbSparse Attention (h = 16, d = 32)
Add, LayerNorm, Dropout (p = 0.1)

Pos-wise FFN (dinner = 2048), GELU
Add, LayerNorm, Dropout (p = 0.1)

Distilling 1x3 conv1d, ELU
Max pooling (stride = 2)

Decoder: N
Inputs 1x3 Conv1d Embedding (d = 512)

2

Masked PSB add Mask on Attention Block

Self-attention
Block

Multi-head Attention (h = 8, d = 64)
Add, LayerNorm, Dropout (p = 0.1)

Pos-wise FFN (dinner = 2048), GELU
Add, LayerNorm, Dropout (p = 0.1)

Final:
Outputs FCN (d = dout)

Algo.(1). The source code is available at https://github.com/
zhouhaoyi/Informer2020. All the procedure can be highly
efficient vector operation and maintains logarithmic total
memory usage. The masked version can be achieved by ap-
plying positional mask on step 6 and using cmusum(·) in
mean(·) of step 7.

Algorithm 1 ProbSparse self-attention

Input: Tensor Q ∈ Rm×d, K ∈ Rn×d, V ∈ Rn×d

1: initialize: set hyperparameter c, u = c lnm and U = m lnn

2: randomly select U dot-product pairs from K as K̄
3: set the sample score S̄ = QK̄>

4: compute the measurement M = max(S̄)−mean(S̄) by row
5: set Top-u queries under M as Q̄
6: set S1 = softmax(Q̄K>/

√
d) ·V

7: set S0 = mean(V)
8: set S = {S1,S0} by their original rows accordingly

Output: self-attention feature map S.

The hyperparameter tuning range
For all methods, the input length of recurrent component is
chosen from {24, 48, 96, 168, 336, 720} for the ETTh1,
ETTh2, Weather and Electricity dataset, and chosen from
{24, 48, 96, 192, 288, 672} for the ETTm dataset. For
LSTMa and DeepAR, the size of hidden states is chosen
from {32, 64, 128, 256}. For LSTnet, the hidden dimen-
sion of the Recurrent layer and Convolutional layer is cho-
sen from {64, 128, 256} and {32, 64, 128} for Recurrent-
skip layer, and the skip-length of Recurrent-skip layer is set
as 24 for the ETTh1, ETTh2, Weather and ECL dataset, and
set as 96 for the ETTm dataset. For Informer, the layer of en-
coder is chosen from {6, 4, 3, 2} and the layer of decoder is
set as 2. The head number of multi-head attention is chosen
from {8, 16}, and the dimension of multi-head attention’s
output is set as 512. The length of encoder’s input sequence
and decoder’s start token is chosen from {24, 48, 96, 168,
336, 480, 720} for the ETTh1, ETTh2, Weather and ECL

https://github.com/zhouhaoyi/Informer2020
https://github.com/zhouhaoyi/Informer2020
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Figure 9: The predicts (len=336) of Informer, Informer†, LogTrans, Reformer, DeepAR, LSTMa, ARIMA and Prophet on the
ETTm dataset. The red / blue curves stand for slices of the prediction / ground truth.

dataset, and {24, 48, 96, 192, 288, 480, 672} for the ETTm
dataset. In the experiment, the decoder’s start token is a seg-
ment truncated from the encoder’s input sequence, so the
length of decoder’s start token must be less than the length
of encoder’s input.

The RNN-based methods perform a dynamic decoding
with left shifting on the prediction windows. Our proposed
methods Informer-series and LogTrans (our decoder) per-
form non-dynamic decoding.

Appendix F Extra experimental results
Fig.(9) presents a slice of the predicts of 8 models. The most
realted work LogTrans and Reformer shows acceptable re-
sults. The LSTMa model is not amenable for the long se-
quence prediction task. The ARIMA and DeepAR can cap-
ture the long trend of the long sequences. And the Prophet
detects the changing point and fits it with a smooth curve
better than the ARIMA and DeepAR. Our proposed model
Informer and Informer† show significantly better results
than above methods.

Appendix G Computing Infrastructure
All the experiments are conducted on Nvidia Tesla V100
SXM2 GPUs (32GB memory). Other configuration includes
2 * Intel Xeon Gold 6148 CPU, 384GB DDR4 RAM and 2
* 240GB M.2 SSD, which is sufficient for all the baselines.
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