TGERS utgers Business School Newark and New Brunswick

26:010:685:01: Decoding of Textual Corp Com Dr. Mauricio Codesso Fall 2018 NWK: 1WP: 358 MON 1:00-3:50PM

NWK: 1WP: 919C mauricio.codesso@rutgers.edu Office Hours: MON 04:00-05:00PM

Course Description

In Decoding of Textual Corporate Communications, you will learn the literature and techniques needed to incorporate unstructured text into your research.

Academic Integrity

Academic dishonesty will not be tolerated in class and could result in a failing grade. Please read the complete Rutgers policy on academic integrity at:

http://academicintegrity.rutgers.edu/

Harassment and Discrimination

Harassment and discrimination of any sort will not be tolerated in this class. If you feel you are a victim of harassment or discrimination, or if you are a witness to such behavior, please contact the instructor immediately. Please see the complete Rutgers policy on harassment and discrimination at: http://policies.rutgers.edu/PDF/Section60/60.1.12-current.pdf

Point Allocation

Attendance (140)

Participation (260)

Final Research Proposal (200)

Attendance and Participation Assignments

Attendance will be taken every day. You will not earn these points if you are absent. You will not lose points for University excused absences that are also reported through the University systems at https://sims.rutgers.edu/ssra/. If you do miss a day of class due to an excused absence you will still be responsible for turning in the required assignments by the following Monday at noon.

Students are required to read all papers assigned for each class and prepare a 40-minute PowerPoint presentation on one of the papers for each class (these will be assigned in class). PowerPoint files must be turned in before class starts. From time to time coding assignment will also be given and will count toward the participation grade.

Final Research Proposal

A minimum 2000-word research proposal (excluding the required references) will be turned in at the end of the semester. More details will be given during the sixth week of class.

Required Book

Make your own Neural Network E-Book (Rashid, 2016)

Course Schedule

The course schedule is subject to change according to our progress in class.

Week	Торіс	Papers	Techniques
1	Overview of Text		Install Anaconda environment. Create
	Mining Research		Python 3.x instance with NLTK
			Python basics
			Program control flow
			Read files
			Write to .txt files
			Write to .csv files
			Accessing Data sources
2	Dictionaries	When is a Liability not a	Dictionary building
		Liability. (Loughran and	Words
		McDonald, 2011)	Phrases
			Lower case
		MD&A Disclosure and the	Stemming and lemmatization
		Firm's Ability to Continue as a	Removing stop words
		Going Concern (Mayew,	
		Sethuraman, Venkatachalam,	
		2014)	
3	Readability	Annual report readability,	Sentence length
		current earnings, and earnings	Word length
		persistence (Feng Li, 2008)	Syllable counting
			FOG, Flesch-Kincaid, ARI
		Readability and	
		understandability: Different	
		measures of the textual	
		complexity of accounting	
		narrative. (Smith and Taffler,	
		1992).	
4	D 1		Desclar Francisco Dest 1
4	Euprossions	Automated contract analysis in	Regular Expressions Part 1
	Expressions	2017 On Dissiboard)	Regex Dasies
			Regex in Python Decular expression exercise
		Knowet Todd and Vallage	Liss nominar summariant to sound and
		Kravet, 1000, and volkan	Use regular expressions to count and
		Wiusiu. Textual fisk disclosules	While to CSV
		and investors fisk	document
		Muche 2012)	document
		Iviusiu, 2015)	Use regular expressions to count
			phrases, permutations of words, etc
5	Decular	Malving manda and the Line	RegEX Parsing an ABKL document
2	Kegular	IVIAKING WORDS WORK: Using	Regular Expressions Part 2
	Expressions	financial text as a predictor of	Regex Advanced Topics

		financial events. (Cecchini et al., 2010) Textual Analysis in Accounting and Finance: A Survey. (Loughran and McDonald, 2016)	RegEx Parsing HTML 10-K RegEx Implementing Dictionary
6	POS Tagging	Holton, Carolyn. "Identifying disgruntled employee systems fraud risk through text mining: A simple solution for a multi- billion-dollar problem. (Holton, 2009) Which spoken language markers identify deception in high-stakes settings? Evidence from earnings conference calls. <i>(Burgoon et al., 2015)</i>	POS Tagging Techniques Penn Treebank Expressivity Parsing Sentences by Tense Passive Voice Noun Phrase Identification
7	Document Similarity	Jegadeesh, Narasimhan, and Di Wu. "Word power: A new approach for content analysis. (Jagadeesh et al. 2013) Large-sample evidence on firms' year-over-year MD&A modifications. (Brown and Tucker, 2011)	TF-IDF Cosine Similarity
8	MYSQL	Natural language processing in accounting, auditing and finance: a synthesis of the literature with a roadmap for future research. (Fisher et al. 2016) Larcker, David F., and Anastasia A. Zakolyukina. "Detecting deceptive discussions in conference calls. (Larcker and Zakolyukina, 2012)	Writing results to MySQL database Install MySQL Connect to MySQL Build conceptual model Query using MySQL Query using Python
9	Topic Modeling	Simultaneously Discovering and Quantifying Risk Types	Topic modeling LDA

		from Textual Risk Disclosures (Bao and Datta, 2014) The information content of mandatory risk factor disclosures in corporate filings. (Campbell et al., 2014)	Dictionary-based Search engine based
10	Naïve Bayes	The information content of forward-looking statements in corporate filings—A naïve Bayesian machine learning approach. (Feng Li, 2010) Accounting variables, deception, and a bag of words: assessing the tools of fraud detection. (Purda and Skillicorn, 2015)	Bayesian Probability Naïve Bayes Algorithm
11	Neural Network	Make your own Neural Network E-Book (Rashid, 2016)	Neural networks Part 1 Neural network basics
12	Neural Network	Make your own Neural Network E-Book (Rashid, 2016)	Neural networks Part 2 Convolutional networks Recursive networks Sentence classification Tensor Flow
13	Sentiment Analysis	Evaluating sentiment in financial news articles. (Schumaker et al., 2012) Processing fluency and investors' reactions to disclosure readability. (Rennekamp, 2012).	Word2Vec Doc2Vec Dictionaries
14	Student Research Presentations		