MACHINE LEARNING

http://kogan.rutgers.edu/ml-phd

26:198:622:01 Index: 20535

A Ph.D. course offered in the spring of 2018

Accounting and Information Systems
Rutgers Business School - Newark and New Brunswick
Rutgers University

Prof. Alexander Kogan
One Washington Park #924 (Newark), (973) 353-1064
kogan@rutgers.edu

<table>
<thead>
<tr>
<th>Location:</th>
<th>Day:</th>
<th>Time:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newark Campus; 1WP-204</td>
<td>Thursday</td>
<td>1:00 p.m. - 3:50 p.m.</td>
</tr>
</tbody>
</table>

Overview: Many successful applications of machine learning exist already, including systems that analyze past sales data to predict customer behavior, identify fraudulent credit card transactions, and recognize faces or spoken speech. This course will cover supervised learning, Bayesian decision theory, parametric methods, multivariate methods, dimensionality reduction, clustering, nonparametric methods, decision trees, linear discrimination, multilayer perceptrons, hidden Markov models, assessing and comparing classification algorithms, and combining multiple learners.

Required Textbook:

 https://mitpress.mit.edu/books/introduction-machine-learning-0
- Author's Web site for this textbook (providing, in particular, errata and the PPT presentations to be used in class) can be found at:
 http://www.cmpe.boun.edu.tr/~ethem/i2ml3e/

The course will utilize the Blackboard online facilities, which can be found at:

https://blackboard.rutgers.edu/

For a student to gain access to our Blackboard system, they must be enrolled and they must have a NETID. Once an enrolled student obtains a NETID, they will be added to the roster within 2 business days. Students should also check their email account in the system and if it is not correct, they need to update their official student record. Students who do not have a NETID, can create one online using this link:

https://netid.rutgers.edu/

Coursework: The coursework includes attendance of lectures and participation in class discussions, writing a research paper and presenting it in class, completing a computational project in machine learning and submitting its results for evaluation, and taking the final exam that will be a review of a published machine
learning paper.

Research Paper: Every student is required to write a research paper devoted to an important topic in machine learning. While it is expected that most students will choose a topic devoted to applications of machine learning in business, other topics may work as well. Every student is required to prepare a three page long proposal for the research paper, and submit this proposal for instructor's evaluation by **March 1, 2018.** The Word document must be posted to the appropriate Blackboard discussion forum, and its printout should be submitted in class. The research paper should be presented during the last meeting of the class on **April 26, 2018.** Both the research paper and the presentation should also be posted to the appropriate Blackboard forum before the last meeting of the class. The research articles to be covered in the research paper can be found in the following theoretical and applied journals publishing relevant articles:

- Data Mining and Knowledge Discovery: http://link.springer.com/journal/10618
- IEEE Transactions on Knowledge and Data Engineering: http://www.computer.org/portal/web/tkde
- Journal of Emerging Technologies in Accounting: http://aaapubs.org/loi/jeta

Most of these journals are available through the Rutgers University Library subscriptions, and can be accessed from campus computers or from home through the library Web site: http://www.libraries.rutgers.edu/find_articles

The following online research tools can be useful in conducting bibliographic searches for your research paper:

- DBLP Computer Science Bibliography: http://dblp.uni-trier.de/db/
- CiteSeer - Scientific Literature Digital Library and Search Engine: http://citeseer.ist.psu.edu/

Important guidance on writing machine learning papers can be found in the following manuscript:

Computational Project: Every student is required to carry out a computational project focused on experimental comparison of several machine learning methods on different datasets. The computational experiment should compare at least **FIVE** different machine learning methods on at least **FOUR** different datasets. Every student is required to prepare a computational project proposal and submit this proposal for instructor's evaluation by **March 29, 2018.** The Word document describing the machine learning methods and the datasets to be utilized in the experiment, as well as the proposed experimental methodology, must be posted to the appropriate Blackboard discussion forum, and its printout should be submitted in class. The description of results of the computational experiment should also be posted to the appropriate Blackboard forum and its printout should be submitted during the last meeting of the class on **April 26, 2018.** It is recommended that the computational experiments be conducted using the public domain Machine Learning software package called **Weka** (using the most recent book version - currently 3-6-13). Here are some useful Weka links:

• WekaWiki: http://weka.wikispaces.com/
• Weka Documentation: http://www.cs.waikato.ac.nz/ml/weka/index_documentation.html

Another good public domain Machine learning software package that can be use in experiments in addition to (or instead of) Weka is RapidMiner:

http://rapidminer.com/

The datasets for use in computational experiments can be obtained from the UCI Machine Learning Repository:

http://mlearn.ics.uci.edu/MLRepository.html

It is absolutely essential to start working on the research paper and the computational project as soon as possible.

Final Exam: You will be given 24 hours starting at 1 PM on May 3, 2018 to write a critical review of a published machine learning article. The article will be made available in the Assignments section of the Blackboard. The completed review has to be submitted through the Assignments section of the Blackboard by 1 PM on May 4, 2018.

Grading: The evaluations of your research paper, the computational project, and the final exam article review will be the basis for the course grade:

<table>
<thead>
<tr>
<th>%</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>40%</td>
<td>Research Paper</td>
</tr>
<tr>
<td>30%</td>
<td>Computational Project</td>
</tr>
<tr>
<td>30%</td>
<td>Final Exam Article Review</td>
</tr>
</tbody>
</table>

Communications and Course E-Mailing List:

The best way to contact me is via email. The course is supported by the RAMS e-mailing list ml-phd-list. The list membership is automatically synchronized with the current class roster. Make sure that your current e-mail address is available in the Rutgers online directory. To post a message to the list, e-mail it to

ml-phd-list@rams.rutgers.edu

All the postings to this list are permanently archived and available from

https://rams.rutgers.edu/archive/archive.cgi

Please note that your postings should be appropriate for this course.

Every student is responsible for maintaining the current e-mail address in the Rutgers Online Directory. You can maintain your personal information at:

https://personalinfo.rutgers.edu/pi/

Preliminary Schedule:
1. 01/18/2018
 Chapter 1 - Introduction to Machine learning
 Chapter 2 - Supervised Learning
2. 01/25/2018
 Chapter 2 - Supervised Learning
 Chapter 3 - Bayesian Decision Theory
3. 02/01/2018
 Chapter 4 - Parametric Methods
4. 02/08/2018
 Chapter 5 - Multivariate Methods
5. 02/15/2018
 Chapter 6 - Dimensionality Reduction
6. 02/22/2018
 Chapter 7 - Clustering
 Chapter 8 - Nonparametric Methods
7. 03/01/2018
 Chapter 8 - Nonparametric Methods
 Chapter 9 - Decision Trees
 ○ Research Paper Proposal is due
8. 03/08/2018
 Chapter 19 - Design and Analysis of Machine Learning Experiments
9. 03/22/2018
 Chapter 10 - Linear Discrimination
10. 03/29/2018
 Chapter 11 - Multilayer Perceptrons
 ○ Computational Project Proposal is due
11. 04/05/2018
 Chapter 13 - Kernel Machines
 Chapter 14 - Graphical Models
12. 04/12/2018
 Chapter 14 - Graphical Models
 Chapter 16 - Bayesian Estimation
13. 04/19/2018
 Chapter 16 - Bayesian Estimation
 Chapter 17 - Combining Multiple Learners
14. 04/26/2018
 Research Paper Presentations
 Computational Projects are due
15. 05/03/2018
 Final Exam starts at 1 PM
 Article review is due at 1 PM on May 4, 2018