The role of accruals in predicting future cash flows and stock returns

François Brochet, Seunghan Nam and Joshua Ronen

Working Paper Series WCRFS: 09-01
The role of accruals in predicting future cash flows and stock returns

François Brochet
Harvard University
fbrochet@hbs.edu

Seunghan Nam*
Rutgers University
snam@rbsmail.rutgers.edu

Joshua Ronen
New York University
jronen@stern.nyu.edu

* Corresponding author: Seunghan Nam

We would like to thank Sandra Chamberlain (AAA Annual Meeting Discussant), Daniel Cohen, Valentin Dimitrov, Sarah McVay and Stephen Ryan for helpful comments. Participants at the Concordia University Research Camp on the Role of Accounting Information in Firm Valuation, the AAA 2007 Annual Meeting, the NYC Four-School Conference and Hong Kong University of Science and Technology also provided useful suggestions.
The role of accruals in predicting future cash flows and stock returns

Abstract:
We revisit the role of the cash and accrual components of accounting earnings in predicting future cash flows using out-of-sample predictions, firm-specific regression estimates, and different levels of aggregation of the dependent variable, with market value of equity as a proxy for all future cash flows. We find that, on average, accruals improve upon current cash flow from operations in predicting future cash flows. As accruals’ contribution to the prediction of future cash flows varies significantly across firm-quarters, we proceed to investigating determinants of accruals’ predictive ability for future cash flows. We find that positive accruals are more likely to improve upon current cash flow in predicting future cash flows. Accruals’ contribution is also increasing in cash flow volatility and decreasing in the magnitude of discretionary accruals and of special items. Finally, portfolios formed on stock return predictions using information from current CFO and accruals yield significantly positive returns on average, as opposed to CFO alone. Hence, investors using predictions based on current accounting data to pick stocks are better off taking accruals into account. We also find that Sloan’s (1996) accrual anomaly is related to our accrual contribution anomaly. Indeed, when accruals’ contribution to future cash flow prediction is the highest, the accrual anomaly vanishes.

Keywords: accruals, cash flows, cash flow predictions, anomalies

JEL Classifications: M41, G14, M43, M44
1. Introduction

The amount of aggregate future cash flows is key to the valuation of a firm’s securities. Alternative valuation models by both academics and financial analysts have focused on the prediction of free cash flows (Copeland, Koller, and Murrin 1994), or residual income (Preinreich 1938, Edwards and Bell 1961, Ohlson 1995). The prediction of cash flows is invariably based on past accounting numbers. One question that has occupied much of the researchers’ attention is whether past cash flows predicted future cash flows better than past earnings or past cash flows and accruals used separately.

Promoting the accrual basis of accounting, the FASB asserts that earnings and their components are a better predictor of future cash flows than current cash flow (FASB 1978). In spite of the FASB argument, scholars and practitioners argue that the subjectivity inherent in estimates embedded in accruals introduces noise that can have a negative impact on their informational value (Dechow and Dichev 2002). Firm managers may engage in self-serving earnings manipulation by reporting numbers based on distorted estimates, which has been shown to decrease the value relevance of earnings (Marquardt and Wiedman 2004). Hence, whether they are made in good faith or with manipulative intent, accruals can be misleading and not representative of firm future performance.

Theoretically, Dechow, Kothari and Watts (1998) and Barth, Cram, and Nelson (2001) show that earnings (and their components) are a better predictor of one-period-ahead cash flows than current cash flow. However, the empirical evidence to date with respect to the predictive ability of accruals for future performance remains inconclusive, due – among other things – to differences in samples and methodologies. In particular,
there is a consensus in the literature that accruals exhibit a significant association with future cash flows incremental to current cash flow (see evidence in Barth et al. 2001), but not in terms of out-of-sample predictions. For example, Lev, Siyi, and Sougiannis (2005) and Yoder (2007) reach conflicting conclusions. Our study extends the literature on the role of publicly available financial statement data in predicting future cash flows and seeks to identify determinants of accruals’ ability to form better cash flow predictions.

We first revisit the findings on cash flow predictability by testing the Dechow et al. (1998) theoretical predictions with an improved methodology that simultaneously addresses the following three dimensions: 1) judgment of the superiority of the predictor being based on out-of-sample forecasts rather than in-sample properties such as R^2, 2) the estimation of firm-specific versus cross-sectional coefficients, and 3) the level of aggregation of future cash flows as the predicted variable. Our evidence based on this set of methodological choices supports the view that accruals contribute to the prediction of future cash flows.

We deem out-of-sample predictions more appropriate than in-sample criteria. In-sample predictions assume that parameters are stable through time and use data not available at the time of the predictions to estimate them. This can result in data overfitting (Clark 2004). We focus our analysis on three key models wherein cash flows are predicted by using 1) current cash flow, 2) current earnings, and 3) current cash flow and total accruals. We choose this parsimonious set of models to avoid data mining, which can result in spurious inferences from out-of-sample forecasts (Granger 1990).\(^1\)

In addition, we compare out-of-sample forecasts of future market capitalizations using firm-specific regressions with and without accruals as a predictor. We consider
market values of equity as the best available proxy for the present value of all future cash flows, i.e., the highest level of aggregation of future cash flows. After obtaining these forecasts, we compute predicted returns derived from the forecasts and form portfolios on the basis of the sorted predicted returns. We are thus able to assess whether investors properly use the predictive ability of current accounting data for future cash flows in forming their expectations, in which case our sorting procedure should not predict actual stock returns.

Our sample utilizes post-SFAS 95 quarterly data from Compustat. We define cash flow as cash flow from operations (CFO) and accruals as the difference between net income and CFO, consistent with Hribar and Collins (2002). In our main analysis, we require 56 time-series observations to develop firm-specific regression estimates. As a result, our holdout sample period is from the third quarter of 2002 to the fourth quarter of 2006. To account for seasonal variations in quarterly cash flows, we deseasonalize our data using the X11 method developed by the U.S. Bureau of Census.

We find evidence that accruals contribute to the prediction of finite sums of cash flows. Accruals reduce mean and median absolute prediction errors for finite sums of future quarterly cash flows from operations and free cash flows. When the predicted variable is current or one-quarter-ahead market value of equity, the model including accruals as a predictor along with CFO exhibits significantly smaller mean and median absolute prediction errors than the model using current CFO alone, by about 5% of total assets.

However, the contribution of accruals to the prediction of future cash flows varies substantially across firm-quarters. To better understand under what circumstances
accruals are more likely to help financial statement users predict future cash flows, we investigate cross-sectional determinants of accruals’ contribution to future cash flow forecasts. We run a regression of the difference between the absolute forecast error when cash flow is the only predictor and the absolute prediction error when both cash flow and accruals are predictors at the firm-quarter level on various firm characteristics. We find that the contribution of accruals to the prediction of future cash flows (and market capitalization) is increasing in the volatility of cash flows, i.e., when the smoothing effect of accruals is most likely to be helpful in forecasting future cash flows. In contrast, accruals’ incremental predictive power is decreasing in the absolute value of discretionary accruals, as measured using the Jones (1991) model. This result suggests that managers’ ability to manipulate accruals is detrimental to the forecasting properties of accruals. We also find that total accruals contribute significantly more to the improvement of cash flow predictions when they are positive. This result is consistent with the argument that positive accruals are more likely driven by a matching/smoothing perspective, which is useful in predicting future cash flows, while negative accruals are more likely related to impairments due to fair-value accounting (Dechow and Ge 2006). Finally, we find that accruals’ contribution decreases in the magnitude of special items, which are highly correlated with discretionary accruals.

Next we ask whether the contribution of accruals to the prediction of future cash flows across firms can result in investment decisions that yield higher risk-adjusted returns if one uses accruals in addition to cash flow as a predictor of future cash flows. We test this hypothesis by forming portfolios based on returns implied by the one-quarter-ahead market capitalization predictions, and find evidence that investors do not
fully exploit the ability of current CFO and accruals to predict future cash flows in forming their expectations. The average hedge return adjusted for the three Fama-French factors and momentum for a 90-day holding period when going long (short) on the highest (lowest) quintile of the quarterly predicted return distributions is insignificantly different from zero, with or without accruals as a predictor. However, as the holding period increases, the returns earned on the portfolio using CFO and accruals become significantly higher than those using CFO only as a predictor. For instance, 270- and 365-day incremental returns when accruals are added as a predictor are about 2% per quarter on average.

Since our results represent an accounting-based anomaly (accruals contribution anomaly, or ACA), we also replicate the accrual anomaly (AA) first documented by Sloan (1996) using quarterly data to investigate whether the ACA is related to the AA. We find that the accrual anomaly is non-existent for stocks in the top quintile of accruals’ contribution to future cash flow predictions. This result supports our view that the current accruals’ ability to forecast future cash flows - rather than properties of current accruals per se, such as their sign and size - is the primary driver of accrual-based anomalies.³

Our study contributes to the literature by demonstrating that accruals’ contribution to future cash flow predictions is most significant when predicting future market capitalizations. Assuming that market capitalization is a good proxy for all future cash flows, this implies that accruals contribute to the prediction of all future cash flows. Many studies show that cash flow and accruals exhibit higher associations with future cash flows and/or stock returns than current cash flow alone (e.g., Dechow 1994, Barth et al. 2001), but none provides such evidence in terms of out-of-sample predictions. Using
pre-1987 annual data, Finger (1994) finds no evidence that earnings outperform current cash flow in predicting future cash flows. Lev et al. (2005) base their forecasts on cross-sectional estimations using annual data. They predict finite measures of cash flows up to three years ahead, and conclude that accruals do not improve upon current cash flow in predicting future cash flows. Yoder (2007) also uses cross-sectional estimates and annual data. He finds that a model derived from theoretical predictions using CFO, accrual components and expected sales growth as predictors yields lower absolute prediction errors for one-year-ahead CFO than current CFO alone. However, he provides no assessment of the economic significance of his results in terms of stock returns. Our paper, by identifying firm characteristics associated with accruals’ ability to predict future cash flows, sheds light on why prior studies find limited support for the argument that accruals have predictive power for future cash flows.

Our results also add to the literature on accounting-based stock anomalies. By documenting predictable abnormal returns based on hedge portfolios that use current accounting data as a sorting criterion, we show that market participants do not fully understand the implications of current CFO and accruals for the present value of future cash flows. In particular, the contribution of accruals to future cash flow predictions does not appear to be fully taken into account by investors, as accruals help improve upon CFO alone in earning abnormal returns over horizons of six months and more. Finally, we show that when accruals improve upon forecast accuracy the most, the accrual anomaly documented by Sloan (1996) is mute.

In addition, our methodological considerations have practical implications, because they address issues of relevance to investors who use current accounting data for
equity valuation purposes. With respect to finite cash flow predictions, finite horizon predictions are of particular relevance to equity valuation techniques that consist of forecasting earnings, cash flows or dividends over a finite period and computing a terminal value (Penman and Sougiannis 1998).

Our study is subject to caveats that apply to most studies in this field. First, by using firm-specific regressions, we require time-series data that unavoidably reduce sample size, but also introduce potential survivorship bias. Second, some accruals and deferrals are estimates subject to moral hazard between managers who report them and shareholders. Our attempt to separate accruals based on their discretionary or unverifiable components using the Jones (1991) model is subject to the usual criticism regarding discretionary accruals estimation error.

The rest of the paper is organized as follows. Section 2 reviews the relevant literature. Section 3 specifies the empirical tests. Section 4 describes the sample selection process and presents the main results. Section 5 summarizes and concludes.

2. Prior literature

Our paper relates to an extensive literature that investigates the valuation implications of components of accounting earnings, either indirectly through their association with future accounting measures, or directly through their association with market values of equity. Because this question has generated a vast number of studies, which generally differ by methodological choices, we provide a matrix (see Appendix A) that highlights the key findings of prior research based on the three dimensions along which we define our contribution, and position our study accordingly. In this section, we
provide a more detailed – albeit not exhaustive - review of the prior literature most directly comparable to our study.

A large number of studies investigate the association between components of GAAP earnings and future profitability measures. A widely cited study by Barth et al. (2001) finds – using a large sample – that current earnings disaggregated into their cash flow and several accrual components are more significantly associated with future cash flows than several lags of earnings and than cash flow only. There are, in contrast, relatively few papers that have assessed the predictive ability of accounting numbers with respect to future cash flows or market values of equity based on out-of-sample prediction errors. Most closely related to this paper, Lev et al. (2005) report that accruals do not significantly contribute to the prediction of future cash flows. Judging from stock returns earned on portfolio allocations derived from future cash flow predictions, they conclude that the accruals’ contribution is not economically significant from an investor’s point of view. Indeed, they find that one- to three-year returns earned on a hedge portfolio using cash flow and accruals to predict future free cash flow or earnings are not higher than those from a portfolio excluding accruals as a predictor. Another contemporaneous study by Yoder (2007) compares out-of-sample prediction accuracy of regression models for one-year-ahead CFO. His results indicate that a model including short-term accrual components outperforms models using only current CFO as a predictor, but only if the independent variables are aggregated over three years. Our study differs from the two aforementioned as we use firm-specific estimates, which we expect to produce significantly lower prediction errors. We also test explicitly whether accruals contribute more to cash flow prediction as we aggregate the dependent variable and include market
value of equity as our proxy for the highest level of aggregation.

Another study by Barth, Beaver, Hand, and Landsman (2005) investigates the role of cash flows, accruals and their components in predicting current equity market values out of sample. Their study differs from ours as they use cross-sectional (pooled and by-industry) estimations with annual data and impose a linear information valuation model (LIM) structure. They also use a jack-knifing procedure where a given firm-year is predicted based on all prior firm-years but also on all other firms in the same year. While technically out-of-sample, such test is not an ex-ante prediction (Pope 2005).

Although the analysis in Kim and Kross (2005) is primarily based on associations rather than predictions, they document that the out-of-sample forecast accuracy of aggregate earnings has been increasing over their sample period. Kim and Kross (2005) use a cross-sectional analysis based on annual data from 1972 to 2001, and do not consider CFO and accruals as distinct predictors.

Finally, we know of three other prediction studies that employ firm-specific estimates. Using annual data, Finger (1994) investigates the relative predictive ability of current cash flow and earnings for future cash flows one to eight years ahead. She documents that current cash flow is a better predictor of future cash flows than earnings for short-term horizons, and finds no horizon over which earnings significantly improve upon cash flow. Using quarterly data, Lorek and Willinger (1996) find that balance sheet numbers have explanatory power incremental to cash flows. They compare the predictive ability of a multivariate time-series model to that of ARIMA univariate models (i.e., using past cash flows only) and of cross-sectional multivariate models developed previously by Wilson (1986, 1987) using absolute out-of-sample prediction errors. Their
multivariate firm-specific model includes past cash flows, operating income and working capital accounts (not change thereof). Dechow et al. (1998) report lower mean standard deviation of forecast errors for earnings versus cash flow where forecast errors are computed as the difference between current earnings (cash flow) and one- to three-year-ahead cash flow on a firm-specific basis. However, unlike our study, none of the three papers mentioned above explicitly tests for the contribution of the accrual component of earnings. Overall, our study extends upon past and current literature by combining research design choices (out-of-sample predictions, future aggregate cash flows and market values of equity, firm-specific estimates) that we think are more appropriate in assessing the role of accruals in predicting future cash flows, and by documenting determinants of accruals’ forecasting usefulness.

3. Research design

3.1. Prediction models

We use regression models to predict various measures of future cash flows out of sample. In all models, we use the generic term Predicted_{t+1} to designate the dependent variable, which can be either cash flow from operations (CFO), free cash flow (FCF), both measured over one to eight quarters ahead, or market value of equity ($MKTCAP$), at the beginning or at the end of the fiscal quarter, as a proxy for the present value of all future cash flows. All variables, whether they are being predicted or used as predictors, are scaled by total assets at the end of the previous fiscal quarter. Our main analysis is based upon firm-specific estimations using time-series data. Our benchmark “cash-flow only” model is the following:
Our accounting variables are subject to seasonality. This is particularly the case for firm-level quarterly cash flows time series, which exhibit purely seasonal characteristics, as documented by Lorek and Willinger (1996). Since we use adjacent quarters to make our predictions, we need to adjust for seasonality in our cash flow series. To do so, we use the X11 method as described in Appendix B. In brief, the X11 procedure, developed by the Bureau of Census, decomposes monthly or quarterly data into trend, seasonal and irregular components using moving averages. One can subsequently subtract the estimated seasonal component to come up with a deseasonalized series.

To test whether accruals contribute to reducing prediction errors, we compare Model (1) to models wherein aggregate accruals are included as an independent variable, either aggregated with cash flows, or as a separate predictor:

\[
CFO_{t+1} = \gamma_0 + \gamma_1 CFO_t + \epsilon
\]

(1)

\[
CFO_t = \eta_0 + \eta_1 CFO_{t-1} + \eta_2 ACC_{t-1} + \epsilon
\]

(2)

\[
CFO_t = \phi_0 + \phi_1 EARN_{t-1} + \epsilon
\]

(3)

\textit{ACC} stands for total accruals, defined as the difference between net income before extraordinary items \textit{EARN} (Compustat Quarterly data item 8) and cash flow from operations \textit{CFO} (Compustat Quarterly data item 108) net of extraordinary items/discontinued operations that affect cash flows (Compustat Quarterly data item 78). In Model (3), the coefficients on the cash flow and accrual components of earnings are equal, whereas they are allowed to differ in Model (2). We include Model (3) to assess whether aggregate earnings improve upon current cash flow alone in predicting cash flows.
We further proceed to disaggregate total accruals into their components, based on the premise that different subsets of accruals carry different implications for future cash flows (Barth et al. 2001), such as stemming from the horizon over which cash collectability is expected, or from differing degrees of subjectivity inherent in different subsets of accruals:

\[
CFO_t = \beta_0 + \beta_1 CFO_{t-1} + \beta_2 \Delta AR_{t-1} + \beta_3 \Delta INV_{t-1} + \beta_4 \Delta AP_{t-1} + \beta_5 DEPAMOR_{t-1} + \beta_6 OTHER_{t-1} + \epsilon
\]

Model (4) is similar to the cross-sectional regression that Barth et al. (2001) run to test the incremental explanatory power of disaggregated earnings. This model presents the highest level of accrual disaggregation that we consider. \(\Delta AR\), \(\Delta INV\) and \(\Delta AP\) are changes in working capital accounts: respectively, accounts receivable, inventories and accounts payable. \(DEPAMOR\) is depreciation and amortization. \(OTHER\) is simply the difference between total accruals \(ACC\) and \((\Delta AR + \Delta INV - \Delta AP - DEPAMOR)\). When it is available, we use data from the statement of cash flow for our individual accrual components; otherwise, we use changes in balance sheet accounts. That is, we use changes in accounts receivable, inventory and accounts payable (respectively, Compustat Quarterly data items 103, 104 and 105) if they are available; otherwise, we use changes in data items 37, 38 and 46 from the previous fiscal quarter. Depreciation and amortization expense is Compustat Quarterly data item 77. Market capitalization is the product of Compustat Quarterly data items 14 and 61. Finally, our deflator is total assets (Compustat Quarterly data item 44) as of the beginning of the quarter. One major distinction among accrual components is the timing of their conversion into cash in- or outflows. The changes in working capital variables are expected to affect future cash flows.
flows in the near term (within a year). By contrast, \textit{DEPAMOR} should exhibit a greater association with cash flows in the longer run. Indeed, depreciation and amortization expenses are intended to match costs of investments with their benefits over the expected life of the asset that is being depreciated/amortized, typically several years. Overall, while the use of individual accrual components may help improve prediction accuracy, the decrease in the number of degrees of freedom may offset such a benefit for firm-specific estimations, for which the number of observations is limited.

Each firm-specific model is estimated using 56 consecutive quarterly observations.8 We use rolling windows so that coefficients are “updated” every quarter. The required number of observations represents a trade-off between sample size and the reliability and stability of time-series estimates. Alternatively, we estimate coefficients cross-sectionally, separately for each fiscal quarter. Once we run a regression, we use the coefficient estimates to compute predicted values. For example, based on Model (1),

\[
\frac{\widehat{CFO}_{t+1}}{Assets_i} = \gamma_0 + \gamma_1 \frac{CFO_t}{Assets_{i-1}},
\]

where \(\gamma_0, \gamma_1 \) are estimated from the regression. The predicted value is then compared to the actual value. We compute our absolute prediction errors as follows:

\[
ABSE_j = \left| \frac{CFO_{t+1} - \widehat{CFO}_{t+1}}{Assets_i} \right|
\]

The subscript \(j \) indicates which model was used to compute the predicted value (1, 2, 3 or 4). Since the predicted and actual variables are scaled by total assets, so is \(ABSE_j \). To compare the predictive ability of our different models, we compute the mean and median prediction errors across all firm-quarters in the holdout sample period.
3.2. Multivariate analysis

To investigate determinants of the contribution of accruals to the prediction of future cash flows, we use the following multivariate specification:

\[
ABSE_1 - ABSE_2 = \alpha_0 + \alpha_4 FOURTH_Q + \beta_1 ABS_DISC_ACC + \beta_2 ABS_NONDISC_ACC \\
+ \beta_3 SIGN_ACC + \beta_4 SEASONALITY + \beta_5 CFO_VOLATILITY \\
+ \beta_6 FIRM_SIZE + \beta_7 BOOK_TO_MKT + \sum_j \phi_j INDUS_j + \sum_k \gamma_k YEAR_k + \varepsilon
\]

(6)

The dependent variable is the difference between the absolute prediction error for future cash flows using CFO as the only predictor and the absolute prediction error using CFO and accruals as separate predictors. \textit{FOURTH_Q} is an indicator variable equal to one if the predicted variable is measured over the fourth fiscal quarter (this applies only when we predict one-quarter-ahead cash flow). The fourth fiscal quarter differs from others in terms of accrual properties because of the integral approach, which may have implications for quarterly cash flow predictions. The sign of the coefficient \(\alpha_4\) is left as an empirical question.

\textit{ABS_DISC_ACC} is the absolute value of discretionary accruals, which we estimate using the firm-specific version of the modified Jones (1991) model as in Dechow, Sloan, and Sweeney (1995). Details are provided in Appendix C. There are two main views in the literature regarding managers’ motivations to use their discretion in reporting GAAP numbers. The first one (the “opportunistic” view) is that managers manipulate accounting reports to maintain the firm’s stock price at artificially high levels and benefit from this overvaluation in terms of equity-based compensation. The second one (the “informational” view) is that managers use their discretion to signal their private information about future cash flows. Badertscher, Collins, and Lys (2007) provide evidence that earnings managed with an apparently informational purpose exhibit a
higher association with future cash flows than earnings managed opportunistically do. Since we do not attempt to disentangle opportunistic from signaling motives behind discretionary accruals, we leave as an empirical question whether ABS_DISC_ACC exhibits a significantly positive or negative association with $\text{ABSE}_1 - \text{ABSE}_2$. We also control for the magnitude of non-discretionary accruals, i.e., the difference between total accruals and discretionary accruals.

With respect to SIGN_ACCRAULS, which is an indicator variable equal to one if total deseasonalized accruals are strictly positive, we test whether net positive accruals have greater predictive ability for future cash flows than negative accruals do. We predict a positive sign for β_3, based on the argument that positive accruals are more likely to reflect a smoothing/matching perspective, whereas negative accruals are more likely driven by impairments due to fair value accounting (Dechow and Ge, 2006). SEASONALITY is the degree to which quarterly cash flows are seasonal. We compute this variable by taking the difference between actual cash flow from operations and deseasonalized cash flow from operations. CFO_VOLATILITY is the standard deviation of firm-level cash flow from operations measured from t-16 to t-1. We expect that accruals should be more helpful in predicting future cash flows, the more volatile current cash flows are (Dechow and Dichev, 2002). This should be reflected in a positive sign on β_5. Finally, we include firm size and book-to-market ratio as potential determinants of accruals’ contribution to cash flow predictions. We expect a negative coefficient on both variables. With respect to firm size, larger firms are presumably more mature firms with more stable cash flows which can be predicted more easily using past cash flow observations. As for book-to-market ratio, we argue that accruals are likely to be
informative about growth options beyond current cash flow; i.e., their contribution to future cash flow prediction should be higher in firms with a low book-to-market ratio.

3.3. Portfolio analysis

We test whether the predictive ability of current cash flow and accruals for future market values of equity translates into predictable abnormal returns for portfolio allocations based on current accounting data. To do so, we use the following methodology. First, using shares outstanding at time t, we compute predicted future price \bar{P}_{t+1} based on predicted $\text{MKT}CAP_{t+1}$ (plus dividends) and calculate predicted quarterly stock returns as $\frac{\bar{P}_{t+1} - P_t}{P_t}$. We then rank our observations within each fiscal quarter by predicted return and compute the difference between the mean returns across observations in the top decile/quintile of the predicted return distribution and in the bottom decile/quintile, where returns are cumulated from the day following each firm-quarter’s 10-K or 10-Q filing date over a 90- to 365-day period. Finally, we compare this return across different prediction models (i.e., based on which independent variables were used to predict $\text{MKT}CAP_{t+1}$ + dividends).

4. Sample selection and results

4.1. Sample

We include in our sample all firms that meet our data requirements in the Compustat Quarterly database. The initial sample period covers years 1987 through 2006. We do not use data prior to 1987 because of difficulties in measuring cash flows from operations prior to SFAS 95 (Hribar and Collins 2002). Consistent with prior studies,
we exclude firms in financial services (SIC 6000-6999) and regulated industries (SIC 4900-4999). To produce reliable firm-specific coefficient estimates in our regressions, we must use a reasonably large number of observations. We choose to require the availability of 56 consecutive quarterly observations prior to a given firm-quarter to predict the latter’s cash flow (or aggregates of the predicted cash flow of that firm-quarter and those of following quarters). These requirements result in an upper bound of 16,594 predicted firm-quarters with data available to predict one-quarter-ahead CFO. Fiscal quarters 2002:3Q to 2006:4Q constitute our holdout period. For our cross-sectional regressions, we winsorize the independent variables at 1% and 99% of their quarterly distributions.

4.2. Descriptive statistics

Table 1 reports summary statistics for the variables used in our analysis. Consistent with prior studies, mean and median earnings and CFO are positive, while mean and median accruals are negative. As explained in Barth et al. (2001), this is most likely driven by depreciation and amortization, which is much larger than other accrual components on average.

Table 2 presents summary results for a subset of our firm-specific regression models. We report statistics for regression coefficients and R^2 with one-quarter-ahead CFO and market capitalization as dependent variables. In the regressions of CFO_{t+1} on CFO, the mean and median coefficients on CFO are positive (0.66 and 0.68 respectively). In Model (2), the mean (0.897) and median (0.867) coefficients on CFO are about three times as large as the coefficients on ACC (mean 0.299 and median 0.231). The ratio is smaller when the dependent variable is $MKTCAP_{t+1}$. In terms of R^2, current deseasonalized CFO explains on average about 8.09% of the variation in deseasonalized
CFO_{t+1}, and 6.89% for MKTCAP_{t+1}. The explanatory power for CFO_{t+1} (MKTCAP_{t+1}) increases to 12.69% (25.55%) on average when aggregate accruals are added as a predictor. Disaggregating accruals into their individual components also contributes to an increase in mean firm-specific R^2, 47% and 39% when the predicted variables are CFO_{t+1} and MKTCAP_{t+1} respectively. The superiority of CFO and accrual components in terms of R^2 is consistent with what Barth et al. (2001) document using cross-sectional regressions and annual data.

4.3. Prediction results

4.3.1. Mean and median absolute prediction errors across firm-specific estimates

Tables 3 and 4 report the comparisons of absolute prediction errors (ABSE) for future CFO and FCF across firm-specific models with and without accruals as predictors, over horizons of one- to eight-quarter-ahead and with market capitalization as a proxy for all future cash flows.

Table 3 reports mean and median absolute prediction errors scaled by total assets as of the beginning of the quarter (ABSE) for Models (1), (2) and (3). At this stage, we do not report results from Model (4) because we wish to focus on the results for the larger sample where our data requirements are less constraining. The results for finite measures of cash flows are based on comparisons of predicted values with future deseasonalized cash flows. For all levels of aggregation of future cash flows, Model (2) produces lower mean and median absolute prediction errors than Model (1). The difference in means is statistically significant at conventional levels except when one-quarter-ahead cash flow is predicted. For example, the mean absolute prediction error for CFO_{t+1,t+4} when CFO and accruals are the predictors is 1.30% of total assets, whereas the mean absolute prediction
error from CFO alone is 1.36%. The p-value for the difference in means is 0.02. In terms of medians, \(ABSE_2 \) is significantly smaller than \(ABSE_1 \) for all levels of aggregation of future CFO, at the 0.01 level two-tailed. In addition, we find that aggregate earnings do not outperform CFO and accruals as separate predictors in forecasting finite measures of cash flows. When FCF is the predicted variable, we also find that accruals help reduce absolute prediction errors at the mean and median levels. However, comparisons of mean \(ABSE_1 \) and \(ABSE_2 \) across all firm-quarters show that there is no statistically significant difference for free cash flow predictions. Hence, as with CFO, there is some evidence that accruals help improve free cash flow predictions, but only to a limited extent.

When \(MKTCAP_t \) or \(MKTCAP_{t+1} \) is the predicted value, the incremental contribution of accruals is statistically significant in terms of both mean and median. For example, mean \(ABSE_2 \) for the prediction of \(MKTCAP_t \) is 54.01% compared to 59.63% for \(ABSE_1 \), with a t-stat of 5.31 (the corresponding p-value being below 0.01). In general, accruals improve upon CFO by reducing the mean and median absolute prediction errors for current or next quarter market value of equity by an order of magnitude of 5% of total assets.

The fourth (eighth) column reports mean (median) differences between \(ABSE_1 \) and \(ABSE_2 \) when prediction errors are matched by firm-quarter. In this case, we test whether the mean and median differences are different from zero. The results indicate that the mean contribution of accruals to finite CFO and FCF prediction is positive, and significantly so for all levels of aggregation. The highest mean contribution as a percentage of total assets is 0.068% when six quarters of CFO are predicted (not tabulated). Accruals also significantly contribute to prediction accuracy at the median
level for finite CFO and FCF. The mean (about 5.6% of total assets) and median (2%) contribution of accruals at the firm-quarter level is also significantly positive at the 0.01 two-tailed level for current and one-quarter-ahead market values of equity.

4.3.4. Contribution of accruals and level of aggregation of future cash flows

We test whether accruals contribute more significantly to the prediction of higher levels of aggregation of future cash flows, as their conversion to cash in- or outflows does not necessarily occur within the next quarter. In Table 3, we have already compared mean and median absolute prediction errors of one- to eight-quarter-ahead (cumulative) CFO of firm-specific regressions based on CFO alone, to CFO and accruals as separate predictors. In Figure 1, we plot the differences in mean and median firm-specific $ABSE_2$ and $ABSE_1$ as a percentage of $ABSE_1$, as a measure of the incremental contribution of accruals compared to current CFO alone, with the level of aggregation of the dependent variable on the horizontal axis. The graph indicates an upward trending contribution of accruals as aggregation increases. The incremental contribution is always higher in terms of median than mean, but from one to six cumulated CFOs of the quarters being predicted, the improvement of accruals is monotonically increasing at the mean level and reaches about 4% (6% for medians). The fact that the mean contribution of accruals tends to level off when the dependent variable is aggregated over more than six quarters suggests that the trade-off between increased noise and signal becomes more severe beyond six quarters. Also, untabulated results show that in terms of median, the incremental contribution of accruals for current market capitalization is 17.6%. Overall, our results tend to show that using one-period-ahead or finite short-horizon measures may understate accruals’ usefulness in predicting future cash flows, especially on a quarterly
4.3.5. Disaggregating accruals into individual components and prediction accuracy

When we require data to be available for individual accrual components as in Model (4), the sample is smaller. To evaluate whether disaggregating accruals into individual components helps improve upon aggregated accruals in predicting cash flows, we compare absolute prediction errors across our models for all firm-quarters with data available for all variables in Model (4).

[Insert Table 4 about here]

Table 4 reports the results. The results indicate that mean absolute prediction error from current CFO and accrual components ($ABSE_4$) is smaller than mean $ABSE_2$ (CFO and aggregate accruals) when the predicted variable is finite CFO aggregated over six to eight quarters and market values of equity. At the median level, $ABSE_4$ is smaller than $ABSE_2$ when the level of aggregation of predicted future CFO is four quarters or more. However, the differences are not statistically significant. The same holds for predictions of market values of equity. As for free cash flow predictions, $ABSE_4$ is greater than $ABSE_2$ at the mean and median levels. Hence, in our sample and with our research design choices, we find no statistically significant improvement in prediction accuracy for future cash flows when disaggregating accruals into individual components.11,12

4.3.6. Multivariate results

The results we provide thus far are averaged across firms with different economic and financial reporting attributes. We test whether the ability of accruals to contribute to future cash flow prediction varies with firms’ accounting and economic properties as
identified in Model (6).

Table 5 reports regression results where the dependent variable is the difference between \(ABSE_1 \) and \(ABSE_2 \), i.e., the extent to which accruals improve upon current cash flow in predicting future cash flows. In the first column, the dependent variable is measured for one-quarter-ahead predictions of future CFO. The positive coefficient on \(SIGN_{ACC} \) suggests that net positive accruals are more likely to improve cash flow prediction than negative accruals. The coefficient is statistically significant (at the 0.01 level). This result is consistent with the argument that positive accruals are more likely to be driven by a matching perspective, and thus to be useful in predicting future cash flows, especially in the short run. The coefficient on \(CFO_{VOLATILITY} \) is significantly positive. This suggests that the more volatile cash flows are, the more accruals will improve upon current cash flows in predicting future cash flows. This result is, again, consistent with the smoothing properties of accruals mitigating the volatile nature of cash flows time series. With respect to the discretionary component of accruals, the coefficient on \(ABS_{DISC_{ACC}} \) is significantly negative. This shows that the greater the magnitude of discretionary accruals, the lower the contribution of total accruals to the prediction of future cash flows. Hence, it appears that, on average, discretionary accruals, as estimated through the Jones (1991) model have a negative impact on the forecasting abilities of accruals. To the extent that our measure of discretionary accruals captures managerial discretion in financial reporting, the opportunistic view of their discretion appears to dominate the informational view.\(^\text{13}\) In contrast, the absolute value of non-discretionary accruals exhibits a significantly positive association with the contribution of accruals to
one-quarter-ahead cash flow predictions. Finally, the negative coefficient on book-to-market ratio indicates that accruals contribute more in improving future cash flow predictions for growth firms.

In the second column, the dependent variable is the contribution of accruals to predictions of CFO aggregated over the next four quarters. The coefficients on the independent variables generally exhibit the same signs as for one-quarter-ahead predictions, but the coefficient on the magnitude of non-discretionary accruals is no longer significant. In contrast, the coefficient on firm size is significantly positive. Hence, accruals are more likely to improve upon larger firms’ cash flow predictions.

Finally, in the last column, we report regression coefficients where the dependent variable is the contribution of accruals to forecasts of market capitalization. In contrast to finite cash flow predictions, there is a significantly positive coefficient on the intercept, which corroborates the univariate findings in Tables 3 and 4. Also, there is a significantly positive coefficient on SEASONALITY. This suggests that the greater the seasonal component of current cash flow, the more useful are accruals in improving forecasts of market values of equity. Overall, the results indicate that the absolute value of discretionary accruals (and special items) exhibits a negative association with total accruals’ contribution to future cash flow predictions across different predicted values, whereas net positive accruals and cash flow volatility are positively associated with accruals’ predictive power.

4.4. Stock return analysis

4.4.1. Stock returns earned by portfolios based on predicted returns

Since one of our predicted variables is one-quarter-ahead market value of equity,
we can test whether out-of-sample forecasts based on current accounting data translate into predictable stock returns. In particular, we test whether the contribution of accruals to future cash flow predictions translates into superior returns to trading strategies taking such a contribution into account. If those returns are in excess of what common risk factors can explain, this would suggest that investors misprice securities by not properly adjusting their expectations of future cash flows when provided with information about current earnings and components thereof.

Table 6 reports stock returns earned on hedge portfolios formed on $MKTCAP_{t+1}$ predictions using information from current earnings and their components. The returns are compounded as of the first day following the most recent 10-Q or 10-K filing date.\(^{14}\) In Panel A, the average 90-day return to a zero-investment portfolio long in the highest and short in the lowest quintile is 1.12% with CFO as the only predictor, 1.13% with CFO and accruals as separate predictors, and 0.65% with aggregate earnings as the sole predictor. These returns, however, are not significantly positive.\(^{15}\)

When we extend the holding period to 180, 270 and 365 days, the hedge portfolio returns based on CFO alone decrease with the window length, while the returns based on CFO and accruals increase and become significantly positive. Hence, the incremental returns earned by using accruals in addition to CFO to rank stocks also increase with the holding period, from 1% on average when positions are held over 180 days, to 2% for 365 days. We find that the excess returns of the accrual-based portfolios are, on average, significantly positive for holding periods of 180 days and more (at the 0.10 level for 180 days, and at the 0.01 level for 270 and 365 days). Ninety-day excess returns are not significantly different from zero. Finally, Panel B reports results based on deciles instead
of quintiles of predicted returns. The results are qualitatively similar to the quintile results.

4.4.2. Accruals’ contribution to future cash flow predictions and the accrual anomaly

The results in Table 6 suggest that investors do not fully incorporate the implications of current CFO and accruals for out-of-sample predictions of all future cash flows in their own expectations and investment decisions. We investigate whether this anomaly is related to the accrual anomaly first documented by Sloan (1996). In particular, we argue that the primary driver of accounting-based anomalies must be investors’ incorrect expectations of future cash flows, rather than properties of current accounting data per se. Hence, we expect that sorting stocks on accrual size should not be associated with predictable stock returns when we control for accruals’ contribution to out-of-sample predictions of future cash flows.

We report the results in Table 7. The first column (row) indicates portfolio ranks in terms of accrual size (accruals’ contribution to one-quarter-ahead market capitalization forecasts). Hence, stocks in the first cell (1,1) are for the lowest quintile for accruals and the lowest accruals’ contribution quintile. We test the accrual anomaly by forming portfolios every quarter that take a long position in low accrual stocks (first row) and a short one in high accruals (fifth row). The mean returns earned by the hedge portfolios are calculated separately for each quintile of accruals’ contribution. Accruals’ contribution is evaluated ex-post, so this sorting criterion is not implementable as a trading strategy and is purely designed to investigate the performance of the hedge portfolios across different levels of accruals’ predictive accuracy. This allows us to examine whether AA still holds when accruals' contribution to predictive accuracy is
The first panel shows mean 90-day returns across portfolios. Except for the highest quintile of accruals’ contribution, the mean return to the hedge portfolios based on accrual size is positive. Furthermore, the returns are significantly positive in the second and third quintiles (p-value below 0.01) and marginally significant in the first and fourth quartiles (p-values of 0.15 and 0.10 respectively).

In the second panel, the 180-day returns show that there is an accrual anomaly in the first four quartiles of accruals’ contribution. For instance, the mean return to hedge portfolios based on accrual size in the lowest quintile of accruals’ contribution is 5.876%, which is significantly different from zero at the 0.05 level. In the second, third and fourth quartiles, the returns are also significantly positive. In contrast, there is no anomaly in the top quintile.

For longer holding periods, the anomaly tends to disappear in most accruals’ contribution quintiles. Overall, however, the results in Table 7 show that the top quintile of accruals’ contribution is the only subset where there is no evidence of an accrual anomaly, regardless of the holding period.

In addition, we compute the hedge return on a portfolio that takes a long position in low accruals and low contribution, and shorts high accrual stocks with high contribution (again, accruals’ contribution is not known when portfolios are formed). We find that this portfolio does not produce significantly positive returns, regardless of the holding period (not tabulated). This provides additional evidence supporting the argument that if we control for the contribution of accruals to the prediction of future cash flows, there is no anomaly based on accrual size.
4.5. Additional tests

We supplement our main analysis by running additional tests that address issues related to the assessment of the relative forecast accuracy of our models at the mean and median levels, the use of X11-adjusted data, the relative prediction accuracy of firm-specific regressions compared to cross-sectional regressions, the time-series requirements of our firm-specific regressions, and the use of current free cash flow instead of cash flow from operations to predict future free cash flows.

Comparisons of mean and median absolute forecast errors offer only a limited view of the relative predictive ability of different models. We assess whether the distribution of prediction errors reveals which model outperforms the other by running a stochastic dominance test based on Davidson and Duclos (2000). We find that CFO and accruals significantly dominate CFO alone in predicting market capitalization at the beginning and the end of fiscal quarter t+1 in the second degree. However, there is no evidence of stochastic dominance of CFO and accruals over CFO alone for the prediction of finite measures of CFO.

The X11 method is usually performed to address seasonality in macro-level data, and to our knowledge it has not yet been implemented in the accounting literature. Prior studies analyzing quarterly accounting data have generally treated seasonality by using variables four quarters apart. Accordingly, we repeat our main analysis by comparing absolute prediction errors from the following models:

$$CFO_t = \gamma_0 + \gamma_1 CFO_{t-1} + \varepsilon$$ (7)

$$CFO_t = \sum_{j=1}^{4} v_j Q_j + v_3 CFO_{t-1} + \varepsilon$$ (8)
where Q_i (i=1,2,3,4) is an indicator variable equal to 1 if the predicted variable is from fiscal quarter i. We add ACC_{t-4} and ACC_{t-1} as a predictor to Model (7) and (8) respectively to test accruals’ contribution to cash flow predictions. Under those specifications, we still find that accruals contribute positively to cash flow forecast accuracy. However, we notice that the X11 method produces more accurate forecasts.

To validate our claim that firm-specific regression estimates produce more accurate predictions than cross-sectional ones, we compare absolute prediction errors from Models (1) to (4) for a given predicted variable using different estimation procedures. We estimate regression coefficients at the following levels: 1) using all firms with data available in a given year, 2) by industry (two-digit SIC code) and 3) by operating cycle (estimated according to the Dechow et al. (1998) model). For each model, coefficients are estimated separately fiscal quarter by fiscal quarter. Untabulated results show that for a given set of predictor(s) and predicted variable, firm-specific regressions, on average, outperform any of the above cross-sectional models. The differences are statistically significant. Among the cross-sectional models, industry-level estimates are the most accurate ones.

To minimize any implications our time-series requirements might have for the generalizability of our results, we relax our requirements from 56 down to 16 consecutive observations. In that case, we still find that accruals improve upon cash flow from operations in predicting future cash flows, although their incremental contribution diminishes beyond six quarters of aggregation of the dependent variable. Our conclusions with respect to accruals’ contribution to future cash flow predictions remain qualitatively unchanged from the conclusions we reach using the main sample. In addition, we still
find that firm-specific predictions are significantly more accurate than cross-sectional ones.

The results in Tables 3 and 4 suggest that absolute forecast errors are greater when free cash flows are the predicted variable compared to cash flow from operations. We test whether we can improve free cash flow forecasts by replacing current CFO with current free cash flow, and accruals with the difference between net income and free cash flow. Untabulated results show that this set of predictors improves upon CFO and accruals in terms of forecast accuracy. It also appears that the difference between net income and free cash flow contributes to greater forecast accuracy for future free cash flow beyond current free cash flow.

5. Conclusion

This study investigates the role of earnings components in predicting future cash flows and explaining the mispricing of securities. While the FASB emphasizes the role of accrual accounting in helping investors to predict future cash flows, unintentional errors in accounting estimates and earnings manipulation can decrease the usefulness of accruals in predicting future cash flows. Our tests are aimed at addressing this empirical issue, i.e., documenting whether accruals contribute to the prediction of future cash flows incrementally to current cash flow alone, and investigating cross-sectional determinants of accruals’ contribution to cash flow predictions. Subsequently, we investigate whether the extent to which accruals help improve future cash flow forecast accuracy is associated with accounting-based stock price anomalies.
The key methodological features of our tests are the following: 1) judgment of the superiority of our different models is based upon out-of-sample criteria, 2) coefficients are estimated at the firm-level, using time-series data, and 3) predicted variables are not only finite measures of future cash flows but also market values of equity as a surrogate for the present value of all future cash flows. We use post-SFAS 95 data to measure cash flows directly from the statement of cash flow, and we use quarterly data to obtain a sufficient number of observations for our firm-specific estimates. To address seasonality in quarterly accounting data, we use the X11 procedure developed by the U.S. Bureau of Census.

We find that the mean and median contributions of accruals in terms of absolute prediction errors are smaller compared to CFO only when predicting aggregated CFO and free cash flows over one to eight quarters. The differences are generally statistically significant. When predicting contemporaneous or next quarter market value of equity as a proxy for all (expected) future cash flows, accruals clearly contribute. Indeed, mean and median absolute prediction errors are smaller by more than 5% of total assets when accruals are included as a predictor. These results highlight the importance of assessing the ability of accruals to predict future cash flows by measuring the predicted variable over a sufficiently long horizon.

We subsequently investigate what economic attributes of a firm and its financial reports can explain why accruals’ contribution to cash flow predictions varies substantially across firm-quarters. We find that the magnitude of discretionary accruals, as measured using the modified Jones (1991) model, exhibits a significantly negative association with accruals’ contribution. We interpret this result as evidence that
managerial discretion in reporting estimates in financial statements is detrimental, on average, to the forecasting properties of total accruals. We also find that accruals are more likely to help improve cash flow predictions when they are positive, and when cash flows are volatile.

Finally, we document that portfolios based on out-of-sample predictions of one-quarter-ahead stock return can earn positive quarterly risk-adjusted returns when sorting stocks on current CFO and accruals, but not CFO alone. This suggests that investors do not fully incorporate the contribution of accruals to future cash flow predictions into their own expectations. In addition, we find that Sloan’s (1996) accrual anomaly vanishes when accruals improve the most beyond current cash flow in predicting future cash flows. Hence, after we control for the actual contribution of current accruals to the prediction of future cash flows (which is not observed by investors at the time they form portfolios using current accruals), properties of current accruals such as their sign and size do not appear to be associated with predictable stock returns.

We perform various robustness checks, such as lowering our time-series requirements, addressing seasonality using more conventional methods in the accounting literature (e.g., using data from quarter t-4 to predict quarter t) and estimating regression coefficients cross-sectionally (e.g. per industry). Our conclusions remain qualitatively unchanged by these alternative research design choices.

Collectively, our results may have implications for investors who use current accounting data for equity valuation purposes. While the ability of accruals to contribute to the prediction of finite measures of cash flows varies with model specifications and
levels of aggregations of the dependent variable, it is robust and unequivocally significant when market value of equity is predicted.
Endnotes:

1. In this context, data mining refers to situations where researchers try different models and report the most accurate one, either within the same study or across several studies (Denton 1985, West 1996).

2. As a robustness check, we use two alternative models to address seasonality in our quarterly data. First, we add as independent variables indicators for fiscal quarters in order to account for the average component of seasonality in quarterly CFO. Second, we use data from four quarters prior to predict future cash flows. Our conclusions with respect to the contribution of accruals to future cash flow prediction remain unchanged. However, we observe that X11-adjusted data produce more accurate forecasts than the aforementioned alternatives, a result of potential relevance to financial statement users.

3. Since our result is based on the benefit of hindsight (we compute ex-post forecast accuracy), it is complementary to studies that document implementable trading strategies using current accruals.

4. To address this issue, we lower our time-series requirement to 16 quarters of data available, and still find that accruals contribute to improving cash flow forecasts.

5. We measure FCF using Damadoran’s (2004) definition of free cash flow to equity, which is net income – (1-δ) x (Capital expenditure – Depreciation) – (1-δ) x Δ Working Capital, where δ is debt to total assets ratio. We repeat our analysis using another well-known definition of FCF (Cash flows from operations – Capital expenditures) and obtain similar results.

6. Consistent with prior research, we measure market values of equity as of fiscal period end (see Barth et al. 2001, Barth et al. 2005).
7. Hribar and Collins (2000) note that Compustat reports year-to-date interim cash flow statement data, so we take differences between quarters t and t-1 to obtain quarterly numbers.

8. X11 cannot be performed if there are missing observations in the middle of the series.

9. The motivation for this procedure is to avoid using information not available at the time the prediction is being made, such as shares issued or repurchased during quarter t+1. Results are qualitatively unchanged when predicted $MKTCAP_{t+1}$ is divided by the number of shares outstanding at the end of quarter t+1. Note that we predict the sum of $MKTCAP_{t+1}$ and dividends, so our predictions are not based on actual dividends paid during t+1.

10. Hribar and Collins (2002) show that mergers, acquisitions and divestitures create significant errors in estimates of accruals measured with changes in balance sheet accounts.

11. We also attempt to distinguish between long-term accruals (depreciation and amortization) and others, but find no improvement compared to aggregate accruals.

12. The evidence in Barth et al. (2005) also suggests that CFO and aggregate accruals tend to better predict market value of equity than CFO and accrual components in terms of median ABSE, while components do better at the mean level. They offer no explanation as to why this may be the case. Finger (1994) and Lorek and Willinger (1996) argue that, while theoretically superior, models including more predictors do not always outperform simpler models because of reduced degrees of freedom.

13. In non-tabulated tests, we also add special items as an independent variable. We find a significantly negative association between the magnitude of special items and the
ability of total accruals to predict one-quarter-ahead CFO incrementally to current CFO. This suggests that special items tend to have poor predictive ability for future cash flows, due to their non-recurring nature.

14. Technically, we cannot form portfolios until the last Form 10-Q or 10-K of the quarter is filed. Alternatively, and as is conventional in the literature, we form portfolios as of the filing deadline. We find qualitatively similar results.

15. To evaluate the statistical significance of returns earned by each portfolio, we use a Fama-McBeth procedure: each quarter, we measure the cross-sectional mean return for each portfolio (CFO alone, CFO and accruals, aggregate earnings). We subsequently compute t-statistics which are based on the mean and standard deviation of the time-series of portfolio returns computed fiscal quarter by fiscal quarter, i.e., 18 observations from 2002 to 2006.

16. We choose this test following Tse and Zhang (2004), who conclude that it is superior to the Anderson (1996) and the Kaur, Rao and Singh (1994) tests. For the sake of brevity, we do not describe the test in this paper, but it basically consists of performing comparisons of the distributions of absolute forecast errors for two models (e.g., cash flow only versus cash flow and accruals) at various points and assessing the statistical significance of the differences. Overall, Model A is said to first-degree dominate Model B if at all points of the distribution where the test is performed, the absolute prediction error from Model A is significantly lower than that of Model B. Second-degree dominance is achieved if the error from Model A is always lower, and significantly so at least at one point.
References:

Kim, M., and W. Kross. 2005. The ability of earnings to predict future operating cash flows has been increasing, not decreasing. *Journal of Accounting Research* 43 (December): 753-780.

Yoder, T., 2007. The incremental predictive ability of accrual models with respect to future cash flows. Working paper, Mississippi State University.
Appendix A: Prior literature matrix

This matrix summarizes the main findings in the empirical literature assessing the role of earnings components in predicting future cash flows. The entries are based on research design differences among the studies included in the table:

- The first two columns include papers that predict (or investigate the association of earnings components with) finite measures of future cash flows.
- The last two columns include papers that predict (or investigate the association of earnings components with) market values of equity.
- Within each of the two above sets of columns, the first (second) column includes association (prediction) studies.
- The first row includes studies that use cross-sectional regression estimates.
- The second row includes studies that use firm-specific regression estimates.

<table>
<thead>
<tr>
<th></th>
<th>Finite measure of future cash flows</th>
<th></th>
<th>Market value of equity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In-sample goodness of fit</td>
<td>Out-of-sample prediction errors</td>
<td>In-sample goodness of fit</td>
</tr>
<tr>
<td></td>
<td>Francis and Smith (2005): For most firms, accruals are as persistent as cash flow.</td>
<td>- Finger (1994): Annual earnings no better predictor of annual future cash flows (t+1 to t+8) than cash flow alone.</td>
<td></td>
</tr>
<tr>
<td>Firm-specific estimates</td>
<td>Lorek and Willinger (1996): Quarterly multivariate model using levels of working capital accounts does best in predicting future cash flows.</td>
<td>- OUR STUDY</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B: The X11 procedure

In this appendix, we provide a brief description of the X11 procedure, which we use in this paper to undo the seasonality in quarterly accounting data. This appendix is necessarily brief and superficial, since going into detail would require a prohibitively long description.1 We are unaware of previous studies in accounting that use X11. There is a considerable amount of research in economics on how to adjust for seasonality, including on X11. To implement X11, we rely on the built-in procedure from the SAS statistical software.

The X11 procedure was first developed by the US Bureau of Census in 1953. It is based on the “ratio to moving average” procedure described by Macaulay (1931). It consists of the following key steps:

1) Estimate the trend component (\(T_t\)) of the time-series by a moving average.

2) Remove the trend, leaving the seasonal (\(S_t\)) and irregular (\(I_t\)) components.

3) Estimate the seasonal component by moving averages to smooth out irregulars.

A good estimate of the trend requires prior seasonal adjustment, but seasonality is generally impossible to identify without knowing the trend (Shiskin 1958). To circumvent this issue, X11 is based on an iterative process. Although the default model is a multiplicative one, we use an additive process to seasonally adjust all but one of our variables (depreciation and amortization). The additive process is used when the magnitude of the seasonal and irregular components do not change with the level of the trend. The observed time-series data (\(O_t\)) is thus decomposed as follows: \(O_t = T_t + S_t + I_t\).

1 Details can be found at the US Census Bureau website (http://www.census.gov/ts/TSMS/KarenH/X-11BookSummary.pdf). See also Ladiray and Quenneville (2001).
The iterative process can be outlined as follows (adapted from Wallis 1982):

(a) Compute the differences between the original series and a centered 4-term moving average, as a first estimate of the seasonal and irregular components (S_t and I_t). Two values at each end of the series are lost.

(b) Apply a weighted 5-term moving average to each quarter separately, to obtain an estimate of the seasonal component (S_t). For the next-to-last 4 values use an asymmetric 4-term moving average, and for the last 4 values available use an one-sided 3-term moving average (Shiskin, Young, and Musgrave 1967, Appendix B, Table 1B).

(c) Adjust these seasonal components (S_t) to sum to zero (approximately) over any 4-quarter period by subtracting a centered 4-term moving average from them. To obtain the 2 missing values at the end of this average, repeat the last available moving average value 2 times.

(d) Subtract the adjusted seasonal component (S_t) from the original series, to give a preliminary seasonally adjusted series ($I_t + T_t$). The seasonal component for the last 2 values is missing as a result of step (a); for these last 2 quarters, use the estimated seasonal component for the corresponding month of the preceding year.

(e) Apply a 9-, 13- or 23-term Henderson (1916) moving average to the seasonally adjusted series, and subtract the resulting trend-cycle series from original series to give a second estimate of the seasonal and irregular components (S_t and I_t).

(f) Apply a weighted 7-term moving average to each quarter separately, to obtain a second estimate of the seasonal component.

(g) Repeat steps (c) through (f)
(h) Subtract these final estimates of the seasonal component from the original series, giving the seasonally adjusted series \((I_t + T_t)\).

Unless otherwise stated, our regressions and predictions based on X11-adjusted data use \(T_t + I_t\); i.e., they exclude the seasonal component. With quarterly data, the X11 procedure requires a minimum of twelve observations per firm, so our requirement of 56 observations for regression estimates is largely sufficient for the deseasonalization process as well.

To illustrate the effect of X11 on quarterly data, we provide two examples of firms for which we plot the original and deseasonalized time series of quarterly CFO, one apparently subject to seasonality (Figure A), and one without seasonality (Figure B).

We also report in the table below (see variable definitions in Table 1) the correlations between unadjusted and deseasonalized numbers for each of the variables used in the analysis. The results indicate that deseasonalized numbers are highly correlated with the original data, except for depreciation and amortization. “Other” accruals were not deseasonalized, but simply calculated as the difference between deseasonalized aggregate accruals and deseasonalized individual components, i.e., as a residual.

<table>
<thead>
<tr>
<th>N=15,694</th>
<th>Spearman correlation</th>
<th>Pearson correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFO</td>
<td>0.861</td>
<td>0.966</td>
</tr>
<tr>
<td>ACC</td>
<td>0.745</td>
<td>0.907</td>
</tr>
<tr>
<td>EARN</td>
<td>0.939</td>
<td>0.990</td>
</tr>
<tr>
<td>ΔAR</td>
<td>0.806</td>
<td>0.994</td>
</tr>
<tr>
<td>ΔAP</td>
<td>0.774</td>
<td>0.855</td>
</tr>
<tr>
<td>ΔINV</td>
<td>0.833</td>
<td>0.946</td>
</tr>
<tr>
<td>DEPAMOR</td>
<td>0.970</td>
<td>0.908</td>
</tr>
<tr>
<td>OTHER</td>
<td>0.796</td>
<td>0.895</td>
</tr>
</tbody>
</table>
Examples of CFO time-series before and after deseasonalization through the X11-procedure

Figure A: Firm with apparent seasonality in quarterly CFOs (Gvkey: 1239)

Figure B: Firm with no apparent seasonality in quarterly CFOs (Gvkey: 12658)
Appendix C: The modified Jones (1991) model

We estimate discretionary accruals (DISC_ACC) as the residual from the following firm-specific regression:

\[
\frac{ACC_i}{Total\ Assets_{i,t}} = \alpha \frac{1}{Total\ Assets_{i,t}} + \beta_1 \left(\frac{\Delta REV_i - \Delta REC_i}{Total\ Assets_{i,t}} \right) + \beta_2 \frac{PPE_i}{Total\ Assets_{i,t}} + \epsilon_i
\]

ACC is total accruals, defined as income before extraordinary items & discontinued operations (Data8) minus (cash flow from operations (Data108) net of extraordinary items/discontinued operations that affect cash flows (Data78)).

\(\Delta REV\) is change in Sales (Data2).

\(\Delta REC\) is Data103 if available. If the data item is not available, we use the change in AR (Data37).

All the variables above are deseasonalized using X11.

PPE is net Property, Plant & Equip, Data42.

DISC_ACC is the residual of the regression, namely,

\[
DISC_ACC_i = \frac{ACC_i}{Total\ Assets_{i,t}} \left[-\hat{\alpha} \frac{1}{Total\ Assets_{i,t}} + \hat{\beta}_1 \left(\frac{\Delta REV_i - \Delta REC_i}{Total\ Assets_{i,t}} \right) + \hat{\beta}_2 \frac{PPE_i}{Total\ Assets_{i,t}} \right].
\]
Table 1: Descriptive statistics

This table reports summary statistics for variables in the holdout period of the sample, i.e., from the third fiscal quarter in 2002 to the fourth quarter in 2006. The sample includes all firm-quarters preceded by 56 consecutive observations with data available for all variables in the table.

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>25%</th>
<th>Median</th>
<th>75%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSETS</td>
<td>16,549</td>
<td>5,808</td>
<td>28,422</td>
<td>156</td>
<td>741</td>
<td>3,016</td>
</tr>
<tr>
<td>MKTCAP</td>
<td>16,549</td>
<td>6,766</td>
<td>24,785</td>
<td>148</td>
<td>744</td>
<td>3,344</td>
</tr>
<tr>
<td>CFO</td>
<td>16,549</td>
<td>0.0213</td>
<td>0.0493</td>
<td>0.0074</td>
<td>0.0240</td>
<td>0.0409</td>
</tr>
<tr>
<td>ACC</td>
<td>16,549</td>
<td>-0.0129</td>
<td>0.0521</td>
<td>-0.0252</td>
<td>-0.0115</td>
<td>0.0018</td>
</tr>
<tr>
<td>EARN</td>
<td>16,549</td>
<td>0.0083</td>
<td>0.0467</td>
<td>0.0036</td>
<td>0.0135</td>
<td>0.0243</td>
</tr>
<tr>
<td>ΔAR</td>
<td>12,327</td>
<td>-0.0076</td>
<td>0.0438</td>
<td>-0.0183</td>
<td>-0.0041</td>
<td>0.0048</td>
</tr>
<tr>
<td>ΔAP</td>
<td>12,327</td>
<td>0.0048</td>
<td>0.0361</td>
<td>-0.0085</td>
<td>0.0024</td>
<td>0.0154</td>
</tr>
<tr>
<td>ΔINV</td>
<td>12,327</td>
<td>-0.0085</td>
<td>0.0307</td>
<td>-0.0154</td>
<td>-0.0024</td>
<td>0.0014</td>
</tr>
<tr>
<td>DEPAMOR</td>
<td>12,327</td>
<td>0.0287</td>
<td>0.0178</td>
<td>0.0176</td>
<td>0.0253</td>
<td>0.0362</td>
</tr>
<tr>
<td>OTHER</td>
<td>12,327</td>
<td>0.0375</td>
<td>0.0948</td>
<td>0.0045</td>
<td>0.0294</td>
<td>0.0662</td>
</tr>
<tr>
<td>FCF</td>
<td>13,920</td>
<td>0.0071</td>
<td>0.0467</td>
<td>-0.0009</td>
<td>0.0132</td>
<td>0.0254</td>
</tr>
<tr>
<td>ABS_DISC_ACC</td>
<td>14,932</td>
<td>0.0202</td>
<td>0.0321</td>
<td>0.0050</td>
<td>0.0115</td>
<td>0.0237</td>
</tr>
<tr>
<td>ABS_NONDISC_ACC</td>
<td>14,932</td>
<td>0.0145</td>
<td>0.0147</td>
<td>0.0062</td>
<td>0.0113</td>
<td>0.0183</td>
</tr>
<tr>
<td>SEASONALITY</td>
<td>14,932</td>
<td>0.0004</td>
<td>0.0269</td>
<td>-0.0077</td>
<td>0.0000</td>
<td>0.0091</td>
</tr>
<tr>
<td>CFO_VOLATILITY</td>
<td>14,932</td>
<td>0.0232</td>
<td>0.0187</td>
<td>0.0114</td>
<td>0.0180</td>
<td>0.0287</td>
</tr>
<tr>
<td>BOOK-TO-MARKET</td>
<td>14,932</td>
<td>0.5650</td>
<td>0.5175</td>
<td>0.2977</td>
<td>0.4667</td>
<td>0.7104</td>
</tr>
</tbody>
</table>

Variable definitions with Compustat Quarterly data item numbers (all variables are scaled by ASSETS, except ASSETS and MKTCAP, which are expressed in million dollars):

ASSETS: total assets (Data44) as of the beginning of the quarter.
MKTCAP: market value of equity as of the end of the fiscal quarter (from CRSP, Price × Shares outstanding at the end of fiscal quarter).
CFO: cash flow from operations (Data108).
EARN: income before extraordinary items & discontinued operations (Data8).
ACC: EARN minus (CFO - extraordinary items/discontinued operations that affect cash flows (Data78)).
ΔAR: change in accounts receivable from previous quarter (Data103 if available, ΔData37 otherwise).
ΔINV: change in inventories from previous quarter (Data104 if available, ΔData38 otherwise).
ΔAP: change in accounts payable from previous quarter (Data105 if available, ΔData46 otherwise).
DEPAMOR: depreciation and amortization (Data77).
OTHER: ACC – (ΔAR + ΔINV – ΔAP – DEPAMOR).
FCF: EARN (Data8) – (1 - δ) × (Capital expenditure (Data90) – Depreciation (Data77)) – (1 - δ) × Δ Working Capital, where Working capital = (Current Assets (Data40) – Current Liabilities (Data49)) and δ is Debt (Debt in Current liabilities, Data45 + Long term Debt, Data51) to total assets (Data44) ratio.
ABS_DISC_ACC: Absolute value of discretionary accruals, as measured using the modified Jones (1991) model, estimated on a firm-specific basis. See Appendix C.
ABS_NONDISC_ACC: absolute value of non-discretionary accruals. Non-discretionary accruals are the difference between total accruals and discretionary accruals.
SEASONALITY: difference between total cash flow from operations and deseasonalized cash flow from operations.
CFO_VOLATILITY: Standard deviation of quarterly deseasonalized cash flow from operations from t-16 to t-1.
BOOK-TO-MARKET: ratio of book value (Data59) of equity to market value of equity, as of the beginning of the fiscal quarter.
Table 2: Summary of firm-specific regression results

This table reports summary statistics for coefficients in firm-specific regressions of one-quarter-ahead cash flow from operations and market capitalization. The coefficients are estimated using 56 consecutive quarterly observations over rolling windows, starting from the first fiscal quarter of 1987.

| Model | N=16,549 | | Model | N=16,549 | | Model | N=16,549 | | Model | N=12,327 | |
|-------|----------|---|-------|----------|---|-------|----------|---|-------|----------|
| | Dependent variable: CFO_{t+1} | | | Dependent variable: MKTCAP_{t+1} | | | | | | | |
| | Mean | Std. Dev. | Q1 | Median | Q3 | Mean | Std. Dev. | Q1 | Median | Q3 | |
| Intercept | 0.0190 | 0.0189 | 0.0112 | 0.0191 | 0.0282 | 1.3273 | 1.3952 | 0.5846 | 0.9361 | 1.5448 | |
| CFO | 0.1842 | 0.2691 | -0.0111 | 0.1664 | 0.3687 | 6.4588 | 14.3054 | 0.1253 | 2.6518 | 9.0134 | |
| R² | 8.09% | 13.54% | -0.95% | 2.38% | 11.73% | 6.89% | 11.61% | -0.99% | 2.08% | 10.06% | |
| Intercept | 0.0174 | 0.0166 | 0.0099 | 0.0172 | 0.0260 | 0.9976 | 1.3515 | 0.4204 | 0.6955 | 1.2063 | |
| CFO | 0.3644 | 0.4968 | 0.1021 | 0.3895 | 0.6421 | 23.6222 | 32.2929 | 5.7757 | 15.7165 | 31.8475 | |
| ACC | 0.2664 | 0.4872 | 0.0263 | 0.2186 | 0.5101 | 20.8262 | 30.9259 | 4.2215 | 12.3207 | 27.7030 | |
| R² | 12.69% | 16.53% | 0.57% | 6.96% | 19.61% | 25.55% | 20.70% | 8.59% | 21.74% | 39.55% | |
| Intercept | 0.0190 | 0.0182 | 0.0121 | 0.0199 | 0.0281 | 1.0888 | 1.3758 | 0.4650 | 0.7597 | 1.3276 | |
| EARN | 0.3017 | 0.5014 | 0.0470 | 0.2709 | 0.5610 | 21.9380 | 30.9702 | 4.8272 | 13.2813 | 29.4849 | |
| R² | 8.94% | 14.44% | -0.77% | 2.84% | 12.90% | 23.32% | 20.41% | 6.18% | 18.55% | 36.74% | |
| Intercept | 0.0094 | 0.0365 | -0.0064 | 0.0094 | 0.0261 | 0.9106 | 1.9176 | 0.1726 | 0.7265 | 1.4453 | |
| CFO | 0.3355 | 1.0693 | 0.0209 | 0.3375 | 0.6165 | 21.8475 | 31.5010 | 4.7697 | 13.2081 | 28.5958 | |
| ΔAR | 0.1908 | 1.3548 | -0.1882 | 0.1341 | 0.5226 | 16.9327 | 36.6139 | 0.7616 | 8.3110 | 22.8994 | |
| ΔINV | 0.4567 | 4.9156 | -0.0632 | 0.2391 | 0.6400 | 13.0609 | 156.3166 | 0.3436 | 8.4391 | 23.8046 | |
| ΔAP | -0.4567 | 1.8547 | -0.7136 | -0.3526 | -0.0846 | -17.9243 | 31.7867 | -25.0108 | -9.9917 | -2.7853 | |
| DEPAMOR | 0.0264 | 1.7794 | -0.5426 | -0.0094 | 0.5710 | -18.6138 | 73.7745 | -38.0973 | -13.7426 | 2.6167 | |
| OTHER | 0.2832 | 1.0822 | -0.0104 | 0.2205 | 0.5270 | 19.0486 | 30.6056 | 3.0924 | 10.2049 | 24.3896 | |
| R² | 19.20% | 17.78% | 5.67% | 15.65% | 29.39% | 37.86% | 20.87% | 21.61% | 37.51% | 53.49% | |

See Table 1 for variable definitions.
Table 3: Firm-specific absolute prediction errors

This table reports mean and median absolute prediction errors (ABSE) where cash flow from operations (CFO), free cash flow (FCF) and market capitalization (MKTCAP) as of the beginning and the end of fiscal quarter t+1 are predicted, using firm-specific regressions based on three sets of predictors (deseasonalized using the X11 procedure described in Appendix B): current CFO (ABSE₁), current CFO and accruals (ABSE₂), and current earnings (ABSE₃). The columns labeled “Accruals contribution” report the mean and median improvement in prediction from accruals by comparing absolute prediction errors from CFO versus CFO and accruals at the firm-quarter level. The sample includes all firm-quarters from the third quarter of 2002 to the fourth quarter of 2006 preceded by 56 consecutive observations available for CFO, accruals, and market capitalization. Results are expressed as a percentage of total assets.

<table>
<thead>
<tr>
<th>Means</th>
<th>Medians</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CFO (ABSE₁)</td>
</tr>
<tr>
<td>CFOₜ+₁</td>
<td>2.19</td>
</tr>
<tr>
<td>CFOₜ+₁,ₜ+₂</td>
<td>1.69</td>
</tr>
<tr>
<td>CFOₜ+₁,ₜ+₄</td>
<td>1.36</td>
</tr>
<tr>
<td>CFOₜ+₁,ₜ+₈</td>
<td>1.13</td>
</tr>
<tr>
<td>FCFₜ+₁</td>
<td>2.07</td>
</tr>
<tr>
<td>FCFₜ+₁,ₜ+₂</td>
<td>1.93</td>
</tr>
<tr>
<td>FCFₜ+₁,ₜ+₄</td>
<td>1.76</td>
</tr>
<tr>
<td>FCFₜ+₁,ₜ+₈</td>
<td>1.74</td>
</tr>
<tr>
<td>MKTCAPₜ</td>
<td>59.63</td>
</tr>
<tr>
<td>MKTCAPₜ+₁</td>
<td>65.52</td>
</tr>
</tbody>
</table>

*, ‡, † indicate significance at the 0.01, 0.05, and 0.10 two-tailed levels respectively. A significance indicator next to ABSE₁ (ABSE₂) means that mean or median ABSE₁ is significantly lower (greater) than ABSE₂. A significance indicator next to a mean or median “accruals' contribution” means that it is significantly different from zero. For “Accruals contribution,” we perform dependent t-tests where ABSE₁ and ABSE₂ are matched for each firm-quarter.

CFO(FCF)ₜ+₁,ₜ+n: average cash flow from operations (free cash flow to equity) from quarter t+1 to t+n, scaled by total assets at t+n-1. Free cash flow to equity is defined as net income – (1-d) × (Capital expenditure (Data90) – Depreciation (Data77)) – (1-d) × Δ Working Capital, where Working capital = (Current Assets (Data40) – Current Liabilities (Data49)) and d is Debt (Debt in Current liabilities, Data45+ Long term Debt, Data51) to total assets (Data44) ratio.

MKTCAPₜ: market capitalization as of the beginning (end) of fiscal quarter t+1, scaled by total assets.
Table 4: Firm-specific absolute prediction errors with accrual components

This table reports mean and median absolute prediction errors (ABSE) where cash flow from operations (CFO), free cash flow (FCF), and market capitalization (MKTCAP) are predicted, using firm-specific regressions based on four sets of predictors (deseasonalized using the X11 procedure described in Appendix B): current CFO (ABSE\(_1\)), current CFO and accruals (ABSE\(_2\)), current earnings (ABSE\(_3\)), current CFO and individual components of accruals (ABSE\(_4\)). The sample includes all firm-quarters from the third quarter of 2002 to the fourth quarter of 2006 preceded by 56 consecutive observations available for CFO, accruals, and market capitalization. Results are expressed as a percentage of total assets.

<table>
<thead>
<tr>
<th></th>
<th>Means</th>
<th>Medians</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CFO (ABSE(_1))</td>
<td>CFO (ABSE(_1))</td>
</tr>
<tr>
<td>CFO(_{t+1})</td>
<td>2.12</td>
<td>1.33</td>
</tr>
<tr>
<td>CFO(_{t+1,t+2})</td>
<td>1.64</td>
<td>1.04</td>
</tr>
<tr>
<td>CFO(_{t+1,t+4})</td>
<td>1.31</td>
<td>0.86</td>
</tr>
<tr>
<td>CFO(_{t+1,t+8})</td>
<td>1.10</td>
<td>0.73</td>
</tr>
<tr>
<td>FCF(_{t+1})</td>
<td>2.06</td>
<td>1.13</td>
</tr>
<tr>
<td>FCF(_{t+1,t+2})</td>
<td>1.89</td>
<td>1.10</td>
</tr>
<tr>
<td>FCF(_{t+1,t+4})</td>
<td>1.73</td>
<td>1.02</td>
</tr>
<tr>
<td>FCF(_{t+1,t+8})</td>
<td>1.71</td>
<td>0.90</td>
</tr>
<tr>
<td>MKTCAP(_t)</td>
<td>57.13</td>
<td>31.93</td>
</tr>
<tr>
<td>MKTCAP(_{t+1})</td>
<td>62.43</td>
<td>33.50</td>
</tr>
</tbody>
</table>

*, †, ‡ indicate significance at the 0.01, 0.05, and 0.10 two-tailed levels respectively. A significance indicator next to ABSE\(_1\) (ABSE\(_2\)) means that mean or median ABSE\(_1\) (ABSE\(_2\)) is significantly lower (greater) than ABSE\(_2\).

CFO(FCF)\(_{t+1,t+n}\): average cash flow from operations (free cash flow to equity) from quarter \(t+1\) to \(t+n\), scaled by total assets at \(t+n-1\). Free cash flow to equity is defined as net income – \((1-\delta) \times (\text{Capital expenditure (Data90)} - \text{Depreciation (Data77)}) - (1-\delta) \times \Delta \text{Working Capital}\), where Working capital = (Current Assets (Data40) – Current Liabilities (Data49)), and \(\delta\) is Debt (Debt in Current liabilities, Data45 + Long term Debt, Data51) to total assets (Data44) ratio.

MKTCAP\(_{t+1}\): market capitalization as of the beginning (end) of fiscal quarter \(t+1\), scaled by total assets.
Table 5: Multivariate analysis of accruals’ contribution to cash flow predictions

This table reports regression results where the dependent variable is the difference between the absolute prediction errors for measures of future cash flows based on (1) CFO and accruals and (2) CFO only; the higher this measure, the more accruals improve upon CFO in predicting future cash flows. Coefficients on industry and time fixed effects are omitted. The sample includes all firm-quarters from the third quarter of 2002 to the fourth quarter of 2006 preceded by 56 consecutive observations available for CFO, accruals, and market capitalization. All regressions include two-digit SIC and fiscal year fixed effects.

<table>
<thead>
<tr>
<th>Dependent variable is Accruals’ contribution for the prediction of</th>
<th>CFO<sub>t+1</sub> Coefficients (t-statistics)</th>
<th>CFO<sub>t+1,t+4</sub> Coefficients (t-statistics)</th>
<th>MktCap<sub>t</sub> Coefficients (t-statistics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERCEPT</td>
<td>-0.002 (0.83)</td>
<td>0.002 (1.09)</td>
<td>0.234* (1.65)</td>
</tr>
<tr>
<td>FOURTH_QUARTER</td>
<td>0.001 (1.08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABS_DISC_ACC</td>
<td>-0.065*** (3.79)</td>
<td>-0.064*** (4.06)</td>
<td>-3.519*** (4.52)</td>
</tr>
<tr>
<td>ABS_NONDISC_ACC</td>
<td>0.033** (2.30)</td>
<td>0.000 (0.00)</td>
<td>-0.814 (1.38)</td>
</tr>
<tr>
<td>SIGN_ACC</td>
<td>0.001*** (3.03)</td>
<td>0.001** (2.38)</td>
<td>0.026** (2.44)</td>
</tr>
<tr>
<td>SEASONALITY</td>
<td>-0.007 (0.96)</td>
<td>0.004 (0.77)</td>
<td>0.621** (2.25)</td>
</tr>
<tr>
<td>CFO_VOLATILITY</td>
<td>0.036*** (3.12)</td>
<td>0.032*** (3.09)</td>
<td>1.816*** (3.80)</td>
</tr>
<tr>
<td>FIRM SIZE</td>
<td>0.000 (1.34)</td>
<td>0.000*** (3.78)</td>
<td>-0.002 (0.59)</td>
</tr>
<tr>
<td>BOOK-TO-MARKET</td>
<td>-0.001*** (2.75)</td>
<td>-0.001** (2.08)</td>
<td>-0.039*** (2.74)</td>
</tr>
<tr>
<td>N</td>
<td>14,932</td>
<td>11,663</td>
<td>14,932</td>
</tr>
<tr>
<td>Adj. R²</td>
<td>2.55%</td>
<td>3.31%</td>
<td>3.91%</td>
</tr>
</tbody>
</table>

*, **, *** indicate significance at the 0.10, 0.05, and 0.01 two-tailed levels respectively.

FOURTH_QUARTER: Indicator variable equal to one if the dependent variable is measured over the fourth fiscal quarter, zero otherwise.

ABS_DISC_ACC: Absolute value of discretionary accruals, as measured using the modified Jones (1991) model, estimated on a firm-specific basis.

ABS_NONDISC_ACC: Absolute value of non-discretionary accruals. Non-discretionary accruals are the difference between total accruals and discretionary accruals.

SIGN_ACC: Indicator variable equal to one if total deseasonalized accruals are strictly positive, zero otherwise.

SEASONALITY: Difference between total cash flow from operations and deseasonalized cash flow from operations.

CFO_VOLATILITY: Standard deviation of quarterly deseasonalized cash flow from operations from t-16 to t-1.

FIRM SIZE: Natural logarithm of market capitalization as of the beginning of the fiscal quarter.

BOOK-TO-MARKET: Ratio of book value of equity to market value of equity, as of the beginning of the fiscal quarter.

The independent variables are winsorized at 1% and 99% level.
Table 6: Returns on hedge portfolios based on future market capitalization predictions

This table reports mean equal-weighted abnormal stock returns for portfolios going long on the highest quintile and short on the lowest quintile of the distribution of future return prediction. Abnormal returns are computed as the intercept from a firm-specific regression of daily returns on the three Fama-French factors and momentum. Portfolios are rebalanced every fiscal quarter on the filing date of the Form 10-K or 10-Q. We compute predicted quarterly stock returns using contemporaneous market capitalization and out-of-sample predictions of one-quarter-ahead market capitalization (plus dividends), both divided by shares outstanding at the end of quarter t, with three sets of predictors: CFO only, CFO and aggregate accruals, aggregate earnings, all deseasonalized using the X11 procedure. The sample includes all firm-quarters from the third quarter of 2002 to the fourth quarter of 2006, preceded by 56 consecutive observations available for CFO, accruals, and market capitalization.

Panel A: Quintiles

<table>
<thead>
<tr>
<th></th>
<th>CFO (1)</th>
<th>CFO & accruals (2)</th>
<th>Earnings (3)</th>
<th>p-value for (2) – (1)</th>
<th>p-value for (2) – (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 days from 10-K/Q filing date</td>
<td>1.123%</td>
<td>1.132%</td>
<td>0.648%</td>
<td>0.009%</td>
<td>0.99</td>
</tr>
<tr>
<td>180 days from 10-K/Q filing date</td>
<td>0.770%</td>
<td>1.790%</td>
<td>1.253%</td>
<td>1.021%</td>
<td>0.10</td>
</tr>
<tr>
<td>270 days from 10-K/Q filing date</td>
<td>0.717%</td>
<td>2.685%</td>
<td>1.894%</td>
<td>1.968%</td>
<td><.01</td>
</tr>
<tr>
<td>365 days from 10-K/Q filing date</td>
<td>0.172%</td>
<td>2.251%</td>
<td>1.762%</td>
<td>2.079%</td>
<td><.01</td>
</tr>
</tbody>
</table>

Panel B: Deciles

<table>
<thead>
<tr>
<th></th>
<th>CFO (1)</th>
<th>CFO & accruals (2)</th>
<th>Earnings (3)</th>
<th>p-value for (2) – (1)</th>
<th>p-value for (2) – (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 days from 10-K/Q filing date</td>
<td>1.006%</td>
<td>1.666%</td>
<td>1.526%</td>
<td>0.660%</td>
<td>0.49</td>
</tr>
<tr>
<td>180 days from 10-K/Q filing date</td>
<td>-0.293%</td>
<td>1.389%</td>
<td>0.512%</td>
<td>1.682%</td>
<td>0.06</td>
</tr>
<tr>
<td>270 days from 10-K/Q filing date</td>
<td>0.339%</td>
<td>2.238%</td>
<td>1.174%</td>
<td>1.900%</td>
<td>0.06</td>
</tr>
<tr>
<td>365 days from 10-K/Q filing date</td>
<td>-1.328%</td>
<td>2.189%</td>
<td>1.455%</td>
<td>3.518%</td>
<td><.01</td>
</tr>
</tbody>
</table>

Boldfaced returns are significantly different from zero at the 0.10 level or higher. All p-values are based on two-tailed tests.
Table 7: Accrual anomaly and accruals’ contribution to future cash flow forecasts

This table reports mean size-adjusted returns to portfolios formed on the intersection of quintiles of total deseasonalized accruals (column portfolio ranks) and quintiles of accruals’ contribution to one-quarter-ahead market capitalization predictions (row portfolio ranks) sorted across all firms for each fiscal quarter. The row corresponding to (1)-(5) reports mean returns going long on the highest quintile of total deseasonalized accruals and short on the lowest quintile. The sample includes all firm-quarters from the third quarter of 2002 to the fourth quarter of 2006, preceded by 56 consecutive observations available for CFO, accruals, and market capitalization.

<table>
<thead>
<tr>
<th>Portfolio Rank</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>1.84%</td>
<td>4.56%</td>
<td>2.28%</td>
<td>1.17%</td>
<td>1.51%</td>
</tr>
<tr>
<td>(2)</td>
<td>2.57%</td>
<td>0.60%</td>
<td>1.14%</td>
<td>0.82%</td>
<td>-0.20%</td>
</tr>
<tr>
<td>(3)</td>
<td>1.54%</td>
<td>0.09%</td>
<td>0.70%</td>
<td>-0.33%</td>
<td>-1.34%</td>
</tr>
<tr>
<td>(4)</td>
<td>-1.51%</td>
<td>0.77%</td>
<td>0.05%</td>
<td>0.46%</td>
<td>-1.26%</td>
</tr>
<tr>
<td>(5)</td>
<td>-0.86%</td>
<td>0.44%</td>
<td>-0.69%</td>
<td>-1.03%</td>
<td>2.08%</td>
</tr>
<tr>
<td>(1)-(5)</td>
<td>2.70%</td>
<td>4.12%</td>
<td>2.97%</td>
<td>2.19%</td>
<td>-0.56%</td>
</tr>
<tr>
<td>p-value</td>
<td>0.15</td>
<td><0.01</td>
<td><0.01</td>
<td>0.11</td>
<td>0.75</td>
</tr>
<tr>
<td>180-day returns starting from filing dates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>3.80%</td>
<td>5.95%</td>
<td>4.09%</td>
<td>5.47%</td>
<td>2.05%</td>
</tr>
<tr>
<td>(2)</td>
<td>5.17%</td>
<td>1.62%</td>
<td>1.57%</td>
<td>1.70%</td>
<td>0.58%</td>
</tr>
<tr>
<td>(3)</td>
<td>1.30%</td>
<td>1.05%</td>
<td>1.45%</td>
<td>0.98%</td>
<td>-1.41%</td>
</tr>
<tr>
<td>(4)</td>
<td>-0.39%</td>
<td>0.38%</td>
<td>0.89%</td>
<td>0.79%</td>
<td>-1.81%</td>
</tr>
<tr>
<td>(5)</td>
<td>-2.07%</td>
<td>1.16%</td>
<td>0.37%</td>
<td>0.35%</td>
<td>1.98%</td>
</tr>
<tr>
<td>(1)-(5)</td>
<td>5.86%</td>
<td>4.80%</td>
<td>3.72%</td>
<td>5.12%</td>
<td>0.07%</td>
</tr>
<tr>
<td>p-value</td>
<td>0.05</td>
<td>0.06</td>
<td>0.07</td>
<td>0.03</td>
<td>0.98</td>
</tr>
<tr>
<td>270-day returns starting from filing dates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>5.09%</td>
<td>10.15%</td>
<td>6.58%</td>
<td>8.29%</td>
<td>2.81%</td>
</tr>
<tr>
<td>(2)</td>
<td>6.02%</td>
<td>3.03%</td>
<td>2.23%</td>
<td>2.63%</td>
<td>0.52%</td>
</tr>
<tr>
<td>(3)</td>
<td>2.90%</td>
<td>2.49%</td>
<td>1.82%</td>
<td>0.92%</td>
<td>-0.01%</td>
</tr>
<tr>
<td>(4)</td>
<td>-1.13%</td>
<td>1.85%</td>
<td>2.46%</td>
<td>2.00%</td>
<td>-1.81%</td>
</tr>
<tr>
<td>(5)</td>
<td>-0.22%</td>
<td>4.55%</td>
<td>2.27%</td>
<td>2.89%</td>
<td>2.43%</td>
</tr>
<tr>
<td>(1)-(5)</td>
<td>5.30%</td>
<td>5.60%</td>
<td>4.30%</td>
<td>5.40%</td>
<td>0.38%</td>
</tr>
<tr>
<td>p-value</td>
<td>0.22</td>
<td>0.21</td>
<td>0.10</td>
<td>0.10</td>
<td>0.92</td>
</tr>
<tr>
<td>365-day returns starting from filing dates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>6.44%</td>
<td>15.13%</td>
<td>10.03%</td>
<td>10.11%</td>
<td>5.35%</td>
</tr>
<tr>
<td>(2)</td>
<td>8.23%</td>
<td>3.43%</td>
<td>3.50%</td>
<td>3.41%</td>
<td>1.73%</td>
</tr>
<tr>
<td>(3)</td>
<td>4.68%</td>
<td>3.07%</td>
<td>4.59%</td>
<td>1.39%</td>
<td>2.41%</td>
</tr>
<tr>
<td>(4)</td>
<td>0.08%</td>
<td>3.00%</td>
<td>4.34%</td>
<td>4.22%</td>
<td>-0.23%</td>
</tr>
<tr>
<td>(5)</td>
<td>1.87%</td>
<td>12.25%</td>
<td>2.37%</td>
<td>3.65%</td>
<td>-0.02%</td>
</tr>
<tr>
<td>(1)-(5)</td>
<td>4.58%</td>
<td>2.88%</td>
<td>7.66%</td>
<td>6.46%</td>
<td>5.38%</td>
</tr>
<tr>
<td>p-value</td>
<td>0.37</td>
<td>0.76</td>
<td>0.02</td>
<td>0.17</td>
<td>0.21</td>
</tr>
</tbody>
</table>

Returns significantly different from zero at the 0.10 level or higher (two-tailed) are in bold font.
Figure 1: Incremental contribution of accruals beyond current CFO in predicting future CFO as a function of the level of aggregation of future CFO

This figure plots the incremental contribution of accruals to the prediction of future cash flows from operations (CFO) compared to current CFO alone. It is measured by \((\text{ABSE}_1 - \text{ABSE}_2) / \text{ABSE}_1\) where \(\text{ABSE}_1 (\text{ABSE}_2)\) is the mean or median firm-specific absolute prediction error when current CFO (current CFO and accruals) is the predictor. The sample includes all firm-quarters from the third quarter of 2002 to the fourth quarter of 2006, preceded by 56 consecutive observations available for CFO, accruals, and market capitalization. The horizontal axis represents the number of quarters of future CFO aggregated. Contributions at the mean and median level are plotted separately.